Phase aberration correction for ultrasound imaging guided extracorporeal shock wave therapy (ESWT): Feasibility study.

Ultrasonics

Department of Electronic Engineering, Sogang University, Seoul 04107, Korea; Medical Solutions Institute, Sogang University, Seoul 04107, Korea; Department of Biomedical Engineering, Sogang University, Seoul 04107, Korea. Electronic address:

Published: July 2023

AI Article Synopsis

Article Abstract

Image guidance of extracorporeal shock wave therapy (ESWT) is important to enhance its efficacy while lowering pain in patients. Real-time ultrasound imaging is an appropriate modality for image guidance, but its image quality substantially reduces due to severe phase aberration from the different speed of sound between soft tissues and a gel pad, which is utilized to control a therapeutic focal point in ESWT. This paper presents a phase aberration correction method for improving image quality in the ultrasound imaging guided ESWT. To correct an error from phase aberration, a time delay based on a two-layer model with different speeds of sound is calculated for dynamic receive beamforming. For the phantom and in vivo studies, a rubber type gel pad (i.e., 1400 m/s) with a specific thickness (3 or 5-cm) was placed on the top of soft tissue and full scanline RF data were acquired. In the phantom study, with phase aberration correction, image quality was highly increased compared to image reconstructions with a fixed speed of sound (i.e., 1540 or 1400 m/s), i.e., 1.1 vs. 2.2 and 1.3 mm in -6dB lateral resolution and 0.64 vs. 0.61 and 0.56 in contrast-to-noise ratio (CNR), respectively. From an in vivo musculoskeletal (MSK) imaging, the phase aberration correction method provided a clearly improved depiction of muscle fibers in a rectus femoris region. These results indicate that the proposed method enables effective imaging guidance of ESWT by improving image quality of ultrasound imaging in real-time.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ultras.2023.107011DOI Listing

Publication Analysis

Top Keywords

phase aberration
24
aberration correction
16
ultrasound imaging
16
image quality
16
imaging guided
8
extracorporeal shock
8
shock wave
8
wave therapy
8
therapy eswt
8
image guidance
8

Similar Publications

Copper-nitrite complexes release nitric oxide and selectively induce oral precancer and cancer cell apoptosis.

J Inorg Biochem

January 2025

Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan; Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan; Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Translational Research Center, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan; Department of Biological Science and Technology, Institute of Molecular Medicine and Bioengineering, Center for Intelligent Drug Systems and Smart Biodevices (IDS2B), National Yang Ming Chiao Tung University, 75 Bo-Ai Street, Hsinchu, Taiwan. Electronic address:

Nitric oxide (NO) is a small, short-lived gas molecule that influences various critical functions in living organisms. It involves multiple physiological processes, including cardiovascular function, metabolism, neurotransmission, immunity, and aberrant NO signaling leads to various disorders such as cardiovascular diseases, diabetes, and cancers. In this study, we explored the potential application of copper-nitrite complexes in treating oral precancer and cancer.

View Article and Find Full Text PDF

Electron Beam-Assisted Au Nanocrystal Shear and Rotation.

Nano Lett

January 2025

School of Chemical Sciences, University of Auckland, Auckland 1010, New Zealand.

Understanding metastable structural transitions under beam irradiation is essential for the phase engineering of nanomaterials. However, in situ studies of beam-induced structural transitions remain challenging. This work uses an electron beam in aberration-corrected high-angle annular dark-field scanning transmission electron microscopy to irradiate Au nanocrystals at room temperature.

View Article and Find Full Text PDF

The disease's trajectory of Alzheimer disease (AD) is associated with and negatively correlated to hippocampal hyperexcitability. Here, we show that during the asymptomatic stage in a knockin (KI) mouse model of Alzheimer disease (APP; APPKI), hippocampal hyperactivity occurs at the synaptic compartment, propagates to the soma, and is manifesting at low frequencies of stimulation. We show that this aberrant excitability is associated with a deficient adenosine tone, an inhibitory neuromodulator, driven by reduced levels of CD39/73 enzymes, responsible for the extracellular ATP-to-adenosine conversion.

View Article and Find Full Text PDF

Atomic Imaging of the Surface Termination and Reconstruction of Low and High Index Iridium Oxide Surfaces and Insights into Their Facet-Dependent Oxygen Evolution Activities.

ACS Appl Mater Interfaces

January 2025

Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong, PR China.

Resolving the atomic surface structure, particularly surface termination or reconstruction, is essential for understanding the catalytic properties of metal oxides. Although rutile phase iridium dioxide (IrO) is the state-of-the-art electrocatalyst for the oxygen evolution reaction (OER) in water splitting, the atomic-level surface structures of IrO remain largely unexplored, limiting our understanding of its facet-dependent OER activities. Herein, we perform aberration-corrected integrated differential phase contrast scanning transmission electron microscopy of the low- and high-index surface structures of spindle-shaped IrO nanorods and reveal distinct surface terminations and/or reconstructions on different surfaces.

View Article and Find Full Text PDF

Magnetic Resonance Acoustic Radiation Force Imaging (MR-ARFI).

J Magn Reson Imaging

January 2025

Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, Utah, USA.

This review covers the theoretical background, pulse sequence considerations, practical implementations, and multitudes of applications of magnetic resonance acoustic radiation force imaging (MR-ARFI) described to date. MR-ARFI is an approach to encode tissue displacement caused by the acoustic radiation force of a focused ultrasound field into the phase of a MR image. The displacement encoding is done with motion encoding gradients (MEG) which have traditionally been added to spin echo-type and gradient recalled echo-type pulse sequences.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!