Premise: Many flowering plants depend on insects for pollination and thus attract pollinators by offering rewards, mostly nectar and pollen. Bee pollinators rely on pollen as their main nutrient source. Pollen provides all essential micro- and macronutrients including substances that cannot be synthesized by bees themselves, such as sterols, which bees need for processes such as hormone production. Variations in sterol concentrations may consequently affect bee health and reproductive fitness. We therefore hypothesized that (1) these variations in pollen sterols affect longevity and reproduction in bumble bees and (2) can thus be perceived via the bees' antennae before consumption.

Methods: We studied the effect of sterols on longevity and reproduction of Bombus terrestris workers in feeding experiments and investigated sterol perception using chemotactile proboscis extension response (PER) conditioning.

Results: Workers could perceive several sterols (cholesterol, cholestenone, desmosterol, stigmasterol, β-sitosterol) via their antennae but not differentiate between them. However, when sterols were presented in pollen, and not as a single compound, the bees were unable to differentiate between pollen differing in sterol content. Additionally, different sterol concentrations in pollen neither affected pollen consumption nor brood development or worker longevity.

Conclusions: Since we used both natural concentrations and concentrations higher than those found in pollen, our results indicate that bumble bees may not need to pay specific attention to pollen sterol content beyond a specific threshold. Naturally encountered concentrations might fully support their sterol requirements and higher concentrations do not seem to have negative effects.

Download full-text PDF

Source
http://dx.doi.org/10.1002/ajb2.16165DOI Listing

Publication Analysis

Top Keywords

pollen
11
bombus terrestris
8
sterol concentrations
8
longevity reproduction
8
bumble bees
8
sterol content
8
sterol
6
concentrations
6
bees
5
sterols
5

Similar Publications

The Chemistry of Sporopollenin Ektexine and Endexine Layers Isolated from Sunflower Pollen through an Ionic Liquid-Mediated Process.

ACS Omega

January 2025

Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), Av. da República, 2780-157, Oeiras, Portugal.

Sporopollenin is a plant polymer present in the exine of the pollen grains that comprises two layers: the endexine and the ektexine. It possesses remarkable mechanical, thermal, and chemical stability and is also highly recalcitrant to hydrolysis. The chemical backbone of sporopollenin mostly consists of a polyhydroxylated aliphatic component and polyketide-derived aliphatic α-pyrone elements.

View Article and Find Full Text PDF

ICE1 (Inducer of CBF Expression 1) Is Essential for the Jasmonate-Regulated Development of Stamen in Arabidopsis thaliana.

Plant Cell Environ

January 2025

Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China.

Floral organ development, pollen germination and pollen tube growth are crucial for plant sexual reproduction. Phytohormones maintain these processes by regulating the expression and activity of various transcription factors. ICE1, a MYC-like bHLH transcription factor, has been revealed to be involved in cold acclimatisation of Arabidopsis.

View Article and Find Full Text PDF

The success of pollen-pistil interaction in Mauritia flexuosa (buriti), a palm adapted to the humid ecosystems, 'veredas', within the Cerrado, is influenced by intrinsic and environmental factors. Its supra-annual flowering, dioecy, and adverse climate conditions pose challenges for fertilization, therefore information on floral biology is essential. This study aimed to ascertain stigma receptivity, and elucidate structural, cytochemical, and ultrastructural aspects of the pollen-pistil relationship.

View Article and Find Full Text PDF

ALBA3 maintains male fertility under heat stress in plants.

J Integr Plant Biol

January 2025

School of Advanced Agricultural Sciences, Peking University, Beijing, 100871, China.

Heat stress (HS) at the reproductive stage detrimentally affects crop yields and seed quality. However, the molecular mechanisms that protect reproductive processes in plants under HS remain largely unknown. Here, we report that Acetylation Lowers Binding Affinity 3 (ALBA3) is crucial for safeguarding male fertility against HS in Arabidopsis.

View Article and Find Full Text PDF

Microsporocytic ARF17 misexpression leads to an excess callose deposition and male sterility in Arabidopsis.

Plant Mol Biol

January 2025

Shanghai Collaborative Innovation Center of Plant Germplasm Resources Development, College of Life Sciences, Shanghai Normal University, Shanghai, China.

The accurate callose deposition plays important roles in pollen wall formation and pollen fertility. As a direct target of miRNA160, ARF17 participate in the formation of the callose wall. However, the impact of ARF17 misexpression in microsporocytes on callose wall formation and pollen fertility remains unknown.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!