Super-resolution microscopy can transform our understanding of nanoparticle-cell interactions. Here, we established a super-resolution imaging technology to visualize nanoparticle distributions inside mammalian cells. The cells were exposed to metallic nanoparticles and then embedded within different swellable hydrogels to enable quantitative three-dimensional (3D) imaging approaching electron-microscopy-like resolution using a standard light microscope. By exploiting the nanoparticles' light scattering properties, we demonstrated quantitative label-free imaging of intracellular nanoparticles with ultrastructural context. We confirmed the compatibility of two expansion microscopy protocols, protein retention and pan-expansion microscopy, with nanoparticle uptake studies. We validated relative differences between nanoparticle cellular accumulation for various surface modifications using mass spectrometry and determined the intracellular nanoparticle spatial distribution in 3D for entire single cells. This super-resolution imaging platform technology may be broadly used to understand the nanoparticle intracellular fate in fundamental and applied studies to potentially inform the engineering of safer and more effective nanomedicines.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10643044PMC
http://dx.doi.org/10.1021/acsnano.2c12808DOI Listing

Publication Analysis

Top Keywords

intracellular nanoparticle
8
nanoparticle distributions
8
super-resolution microscopy
8
super-resolution imaging
8
nanoparticle
6
quantifying intracellular
4
distributions three-dimensional
4
super-resolution
4
three-dimensional super-resolution
4
microscopy
4

Similar Publications

Investigation of potential cytotoxicity of a water-soluble, red-fluorescent [70]fullerene nanomaterial in .

Nanotoxicology

December 2024

Department of Systems Engineering and Biology, Silesian University of Technology, Faculty of Automatic Control, Electronics and Computer Science, Gliwice, Poland.

Fullerenes (C, C) as carbon nanomaterials can enter the environment through natural processes and anthropogenic activities, while synthetic fullerenes are commonly used in medicine in targeted therapies in association with antibodies, or anticancer and antimicrobial drugs. As the nanoparticles, they can pass through cell membranes and organelles and accumulate in the entire cytoplasm. The red-fluorescent, water-soluble [70]fullerene derivative C-OMe-ser, which produces reactive oxygen species upon illumination with an appropriate wavelength, passed into the cytoplasm of the middle region in the digestive system.

View Article and Find Full Text PDF

Silver nanoparticles are recognized for potent antimicrobial properties against pathogenic bacteria, crucial in addressing the severity of leptospirosis, where an ideal treatment is lacking. This study focuses on assessing the antimicrobial efficacy of silver-doped zinc oxide nanoparticles (ZnO:9Ag) on standard Leptospira spp. strains (six species and ten serovars).

View Article and Find Full Text PDF

Keratinocytes exosome participates in the pathogenesis of psoriasis and exosomes always carry long non-coding RNAs (lncRNAs) into target cells to function as an essential immune regulator in psoriasis-related diseases. LncRNA LOC285194 is closely associated with the occurrence of psoriasis. However, whether keratinocyte exosomal LOC285194 participates in the process of psoriasis remains vague.

View Article and Find Full Text PDF

Background: There is a growing interest in exploring the biological characteristics of nanoparticles and exploring their potential applications. However, there is still a lack of research into the potential genotoxicity of fullerene derivatives and their impact on gene expression in human cells. In this study, we investigated the effects of a water-soluble fullerene derivative, C60[C6H4SCH2COOK]5H (F1), on human embryonic lung fibroblasts (HELF).

View Article and Find Full Text PDF

Iron oxide nanoparticles (IONPs) have the potential to be utilized in a multitude of fields, including biomedicine. Consequently, the potential health risks associated with their use must be carefully considered. Most biosafety evaluations of IONPs have focused on examining the impact of the material's distinctive physicochemical attributes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!