Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The shortage of available water resources and climate change are major factors affecting agricultural irrigation. In order to improve the irrigation water use efficiency, it is necessary to predict the water requirements for crops in advance. Reference evapotranspiration (ETo) is a hypothetical standard reference crop evapotranspiration, many types of artificial intelligence models have been applied to predict ETo; However, there are still few in the literature regarding the application of hybrid models for deep learning model parameters optimization. This paper proposes two hybrid models based on particle swarm optimization (PSO) and long-short-term memory (LSTM) neural network, used to predict ETo at the four climate stations, Shaanxi province, China. These two hybrid models were trained using 40 years of historical data, and the PSO was used to optimize the hyperparameters in the LSTM network. We applied the optimized model to predict the daily ETo in 2019 under different datasets, the result showed that the optimized model has good prediction accuracy. The optimized hybrid models can help farmers and irrigation planners to make plan earlier and precisely, and can provide valuable information to improve tasks such as irrigation planning.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10112815 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0281478 | PLOS |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!