Objectives: This work aimed to construct a versatile, effective, and food-grade Agrobacterium tumefaciens-mediated transformation (ATMT) system for recombinant expression in the filamentous fungus Penicillium rubens (also known as Pencillium chrysogenum).
Results: In this study, the wild-type P. chrysogenum VTCC 31172 strain was re-classified as P. rubens by a multilocus sequencing analysis. Further, the pyrG gene required for uridine/uracil biosynthesis was successfully deleted in the VTCC 31172 strain by homologous recombination to generate a stable uridine/uracil auxotrophic mutant (ΔpyrG). The growth of the P. rubens ΔpyrG strain could be restored by uridine/uracil supplementation, and a new ATMT system based on the uridine/uracil auxotrophic mechanism was established for this strain. The optimal ATMT efficiency could reach 1750 transformants for 10 spores (equivalent to 0.18%). In addition, supplementation of uridine/uracil at the concentrations of 0.005-0.02% during the co-cultivation process significantly promoted transformation efficiency. Especially, we demonstrated that the pyrG marker and the amyB promoter from the koji mold Aspergillus oryzae were fully functional in P. rubens ΔpyrG. Expression of the DsRed reporter gene under the regulation of the A. oryzae amyB promoter lighted up the mycelium of P. rubens with a robust red signal under fluorescence microscopy. Furthermore, genomic integration of multiple copies of the Aspergillus fumigatus phyA gene under the control of the amyB promoter significantly enhanced phytase activity in P. rubens.
Conclusions: The ATMT system developed in our work provides a safe genetic platform for producing recombinant products in P. rubens without using drug resistance markers.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10529-023-03374-y | DOI Listing |
Folia Microbiol (Praha)
December 2024
Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources & Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China.
Curr Issues Mol Biol
September 2024
College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China.
(Berk.) is a complex is formed by larvae and . Infestation by , interaction with host larvae, and fruiting body development are three crucial processes affecting the formation of .
View Article and Find Full Text PDFMol Genet Genomics
August 2024
College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070, P.R. of China.
Blue mold, caused by Penicillium italicum, is one of the main postharvest diseases of citrus fruits during storage and marketing. The pathogenic mechanism remains largely unclear. To explore the potential pathogenesis-related genes of this pathogen, a T-DNA insertion library of P.
View Article and Find Full Text PDFZhongguo Zhong Yao Za Zhi
June 2024
School of Chinese Materia Medica, Beijing University of Chinese Medicine Beijing 102488, China.
This study aims to evaluate the in vivo function of Fusarium oxysporum in Glycyrrhiza uralensis by salt tolerance,indoleacetic acid(IAA) production capacity, phosphate-dissolving capacity, and iron carrier production capacity. The stable genetic transformation system of the F. oxysporum was established by Agrobacterium tumefaciens-mediated genetic transformation( ATMT)technology, and the stability and staining efficiency of transformants were detected by the cloning of the marker gene green fluorescent protein(GFP) and the efficiency of β-glucuronidase staining(GUS).
View Article and Find Full Text PDFJ Microbiol Methods
September 2024
National Key Laboratory of Enzyme and Protein Technology, University of Science, Vietnam National University, 334 Nguyen Trai, Thanh Xuan, Hanoi, Viet Nam; Faculty of Biology, University of Science, Vietnam National University, 334 Nguyen Trai, Thanh Xuan, Hanoi, Viet Nam. Electronic address:
Aspergillus niger is a well-known workhorse for the industrial production of enzymes and organic acids. This fungus can also cause postharvest diseases in fruits. Although Agrobacterium tumefaciens-mediated transformation (ATMT) based on antibiotic resistance markers has been effectively exploited for inspecting functions of target genes in wild-type fungi, it still needs to be further improved in A.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!