Endovascular thrombectomy procedures are significantly influenced by the mechanical response of thrombi to the multi-axial loading imposed during retrieval. Compression tests are commonly used to determine compressive ex vivo thrombus and clot analogue stiffness. However, there is a shortage of data in tension. This study compares the tensile and compressive response of clot analogues made from the blood of healthy human donors in a range of compositions. Citrated whole blood was collected from six healthy human donors. Contracted and non-contracted fibrin clots, whole blood clots and clots reconstructed with a range of red blood cell (RBC) volumetric concentrations (5-80%) were prepared under static conditions. Both uniaxial tension and unconfined compression tests were performed using custom-built setups. Approximately linear nominal stress-strain profiles were found under tension, while strong strain-stiffening profiles were observed under compression. Low- and high-strain stiffness values were acquired by applying a linear fit to the initial and final 10% of the nominal stress-strain curves. Tensile stiffness values were approximately 15 times higher than low-strain compressive stiffness and 40 times lower than high-strain compressive stiffness values. Tensile stiffness decreased with an increasing RBC volume in the blood mixture. In contrast, high-strain compressive stiffness values increased from 0 to 10%, followed by a decrease from 20 to 80% RBC volumes. Furthermore, inter-donor differences were observed with up to 50% variation in the stiffness of whole blood clot analogues prepared in the same manner between healthy human donors.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10326096PMC
http://dx.doi.org/10.1007/s10439-023-03181-6DOI Listing

Publication Analysis

Top Keywords

clot analogues
12
healthy human
12
human donors
12
stiffness values
12
tensile compressive
8
blood clot
8
compression tests
8
nominal stress-strain
8
tensile stiffness
8
compressive stiffness
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!