Background: Pancreatic ductal adenocarcinoma (PDA) has a poor prognosis due to its therapeutic resistance. Inactivation of vitamin D/vitamin D receptor (VDR) signaling may contribute to the malignant phenotype of PDA and altered expression of oncoprotein mucin 1 (MUC1) may be involved in drug resistance of cancer cells.
Aim: To determine whether vitamin D/VDR signaling regulates the expression and function of MUC1 and its effect on acquired gemcitabine resistance of pancreatic cancer cells.
Methods: Molecular analyses and animal models were used to determine the impact of vitamin D/VDR signaling on MUC1 expression and response to gemcitabine treatment.
Results: RPPA analysis indicated that MUC1 protein expression was significantly reduced in human PDA cells after treatment with vitamin D3 or its analog calcipotriol. VDR regulated MUC1 expression in both gain- and loss-of-function assays. Vitamin D3 or calcipotriol significantly induced VDR and inhibited MUC1 expression in acquired gemcitabine-resistant PDA cells and sensitized the resistant cells to gemcitabine treatment, while siRNA inhibition of MUC1 was associated with paricalcitol-associated sensitization of PDA cells to gemcitabine treatment in vitro. Administration of paricalcitol significantly enhanced the therapeutic efficacy of gemcitabine in xenograft and orthotopic mouse models and increased the intratumoral concentration of dFdCTP, the active metabolite of gemcitabine.
Conclusion: These findings demonstrate a previously unidentified vitamin D/VDR-MUC1 signaling axis involved in the regulation of gemcitabine resistance in PDA and suggests that combinational therapies that include targeted activation of vitamin D/VDR signaling may improve the outcomes of patients with PDA.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10620-023-07931-3 | DOI Listing |
Mol Cell Endocrinol
January 2025
Research Institute of Medical and Health Sciences, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates; College of Medicine, University of Sharjah, P.O. Box 27272, Sharjah United Arab Emirates.
Vitamin D (VD) has been implicated in regulating insulin secretion and pancreatic β-cell function. Yet, the underlying molecular mechanism of VD in glucose homeostasis is not fully understood. This study investigates the effect of VD in regulating insulin secretion and pancreatic β-cell function.
View Article and Find Full Text PDFPediatr Nephrol
January 2025
Pediatric Nephrology Services, Department of Pediatrics, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Pondicherry, 605006, India.
Background: Limited research exists regarding the genetic profile, clinical characteristics, and outcomes of refractory rickets in children from India.
Methods: Patients with refractory rickets aged ≤ 18 years were enrolled. Data regarding clinical features, etiology, genotype-phenotype correlation, and estimated glomerular filtration rate (eGFR) were recorded.
Int J Mol Sci
January 2025
Department of Stem Cells and Regenerative Medicine, Institute of Natural Fibres and Medicinal Plants, Kolejowa 2, 62-064 Plewiska, Poland.
Vitamin D affects bone metabolism and calcium-phosphate metabolism. Its deficiency leads to bone mineralization disorders and is the cause of abnormal skeletal development from fetal life to the period of completed skeletal growth. In later periods of life, vitamin D deficiency leads to bone metabolism disorders, i.
View Article and Find Full Text PDFChildren (Basel)
December 2024
Department of Pedodontics, Faculty of Dentistry, Ege University, Izmir 35040, Turkey.
Background/objectives: Vitamin D helps the mineralization of bone, teeth, and other calcified tissues by regulating calcium-phosphate metabolism. The nuclear activation of the vitamin D receptor () gene is essential for the effectiveness of vitamin D. The main objective of this study is to determine the role of vitamin D levels and gene variants in dental caries.
View Article and Find Full Text PDFMed Sci Sports Exerc
January 2025
Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, NTNU, Trondheim, NORWAY.
Purpose: The effect of exercise on serum concentration of vitamin D metabolites remains inconclusive, with studies reporting deviating results. This study evaluated the acute effect of a single session of two specific exercise forms; strength training (ST) and high-intensity interval training (HIIT), on circulating 25-hydroxyvitamin D (25(OH)D), free25(OH)D and 1,25-dihydroxyvitamin D (1,25(OH)2D), and skeletal muscle vitamin D receptor (VDR) gene expression, in healthy adults.
Methods: Thirty-nine participants (19 women and 20 men, age 21-30 years) completed a single bout of ST and HIIT exercise, separated by two weeks.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!