The periosteum plays a key role in bone tissue regeneration, especially in the promotion and protection of new bones. However, among the bone repair materials, many biomimetic artificial periosteum lack the natural periosteal structure, stem cells, and immunoregulation required for bone regeneration. In this study, we used natural periosteum to produce acellular periosteum. To retain the appropriate cell survival structure and immunomodulatory proteins, we grafted the functional polypeptide SKP on the surface collagen of the periosteum an amide bond, providing the acellular periosteum with the ability to recruit mesenchymal stem cells. Thus, we developed a biomimetic periosteum (DP-SKP) with the ability to promote stem cell homing and immunoregulation . Compared to the blank and simple decellularized periosteum groups, DP-SKP was more conducive to stem cell adhesion, growth, and osteogenic differentiation . Additionally, compared with the other two groups, DP-SKP significantly promoted mesenchymal stem cell homing to the periosteal transplantation site, improved the bone immune microenvironment, and accelerated new lamellar bone formation in the critical size defect of rabbit skulls . Therefore, this acellular periosteum with a mesenchymal stem cell homing effect is expected to be used as an extracellular artificial periosteum in clinical practice.

Download full-text PDF

Source
http://dx.doi.org/10.1080/09205063.2023.2204779DOI Listing

Publication Analysis

Top Keywords

stem cell
20
acellular periosteum
16
cell homing
16
mesenchymal stem
12
periosteum
11
artificial periosteum
8
stem cells
8
groups dp-skp
8
stem
7
cell
6

Similar Publications

Breast cancer remains the leading cause of mortality among women with cancer. This article delves into the intricate relationship between breast cancer and cancer stem cells (CSCs), emphasizing advanced methods for their identification and isolation. The key isolation techniques, such as the mammosphere formation assay, surface marker identification, Side Population assay, and Aldehyde Dehydrogenase assay, are critically examined.

View Article and Find Full Text PDF

How I Treat Higher-Risk MDS.

Blood

January 2025

H. Lee Moffitt Cancer Center, Tampa, Florida, United States.

Myelodysplastic syndromes/neoplasms (MDS) are a widely heterogenous group of myeloid malignancies characterized by morphologic dysplasia, a defective hematopoiesis, and recurrent genetic abnormalities. The original and revised International Prognostic Scoring Systems (IPSS) have been used to risk-stratify patients with MDS to guide treatment strategies. In higher-risk MDS, the therapeutic approach is geared toward delaying leukemic transformation and prolonging survival.

View Article and Find Full Text PDF

The multicenter, phase III GMMG ReLApsE trial (EudraCT-No:2009-013856-61) randomized relapsed and/or refractory multiple myeloma (RRMM) patients equally to lenalidomide/dexamethasone (LEN/DEX, 25mg days 1-21/40mg weekly, 4-week cycles) re-induction, salvage high dose chemotherapy (sHDCT, melphalan 200mg/m2), autologous stem cell transplantation (ASCT) and LEN maintenance (10mg/day; transplant arm, n=139) versus continuous LEN/DEX (control arm, n=138). Ninety-four percent of patients had received frontline HDCT/ASCT. We report an updated analysis of survival endpoints with a median follow-up of 99 months.

View Article and Find Full Text PDF

Although recent evidence suggests that myeloid clonal hematopoiesis (M-CH) may influence lymphoma clinical outcome, its impact in mantle cell lymphoma (MCL) remains unclear. Here, we report a comprehensive NGS-based analysis of the M-CH mutational landscape at baseline and follow-up in patients enrolled in the Fondazione Italiana Linfomi (FIL) MCL0208 phase 3 trial (NCT02354313), evaluating lenalidomide maintenance versus observation after chemoimmunotherapy and autologous stem cell transplantation (ASCT) in untreated young MCL patients. Overall, 254/300 (85%) enrolled patients (median age 57 years [32-66]) had a baseline sample available for CH analysis.

View Article and Find Full Text PDF

The role of genetic sequencing in the diagnostic work-up for chronic immune thrombocytopenia.

Blood Adv

January 2025

Centre for Haematology, Department of Immunology and Inflammation, Imperial College London, London, United Kingdom, London, United Kingdom.

Immune Thrombocytopenia (ITP) is a heterogenous autoimmune disorder diagnosed by excluding other conditions. Misdiagnosis of primary ITP occurs in patients with inherited thrombocytopenia and primary immunodeficiency syndromes. This study investigates whether genetic testing for inherited thrombocytopenia or primary immunodeficiency can enhance diagnostic accuracy in ITP, and guide treatment strategies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!