On a finite strain modeling of growth in budding yeast.

Int J Numer Method Biomed Eng

MAST (MAterial and STructures), EMGCU (Expérimenation en Modélisation pour le Génic Civil et Urdain), Université Gustave Eiffel, Marne-la-Vallée cedex 2, France.

Published: June 2023

Cell's ability to proliferate constitutes one of the most defining features of life. The proliferation occurs through a succession of events; the cell cycle, whereby the cell grows and divides. In this paper, focus is made on the growth step and we deal specifically with Saccharomyces cerevisiae yeast that reproduces by budding. For this, we develop a theoretical model to predict the growth powered by the turgor pressure. This cell is herein considered as a thin-walled structure with almost axisymmetrical shape. Due to its soft nature, the large deformation range is a priori assumed through a finite growth modeling framework. The used kinematics is based on the multiplicative decomposition of the deformation gradient into an elastically reversible part and a growth part. Constitutive equations are proposed where use is made of hyperelasticity together with a local evolution equation, this latter to describe the way growth takes place. In particular, two essential parameters are involved: a stress-like threshold, and a characteristic time. The developed model is extended to a shell approach as well. In a finite element context, representative numerical simulations examining stress-dependent growth are given and a parametric study is conducted to show the sensitivity with respect to the above mentioned parameters. Finally, a suggestion for natural contractile ring modeling closes this study.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cnm.3710DOI Listing

Publication Analysis

Top Keywords

growth
7
finite strain
4
strain modeling
4
modeling growth
4
growth budding
4
budding yeast
4
yeast cell's
4
cell's ability
4
ability proliferate
4
proliferate constitutes
4

Similar Publications

The tumor microenvironment (TME) is integral to cancer progression, impacting metastasis and treatment response. It consists of diverse cell types, extracellular matrix components, and signaling molecules that interact to promote tumor growth and therapeutic resistance. Elucidating the intricate interactions between cancer cells and the TME is crucial in understanding cancer progression and therapeutic challenges.

View Article and Find Full Text PDF

Background: Impaired intrauterine growth, a significant global health problem, contributes to a higher burden of infant morbidity and mortality, mainly in resource-poor settings. Maternal anemia and undernutrition, two important causes of impaired intrauterine growth, are prioritized by global nutrition targets of 2030. We synthesized the evidence on the role of preconception nutrition supplements in reducing maternal anemia and improving intrauterine growth.

View Article and Find Full Text PDF

Pancreatic cancer is a lethal disease with an insidious onset, and little is known about its early molecular events. Here, we found that the sterol regulatory element-binding protein 1 (SREBP1) expression is gradually upregulated during the initiation of pancreatic cancer. Through in vitro 3D culture of pancreatic acinar cells and experiments in LSL-Kras;Pdx1-Cre (KC) mice, we found that pharmacological inhibition of SREBP1 suppressed pancreatic tumorigenesis.

View Article and Find Full Text PDF

Background: Granulosa cell proliferation and survival are essential for normal ovarian function and follicular development. Long non-coding RNAs (lncRNAs) have emerged as important regulators of cell proliferation and differentiation. Nuclear paraspeckle assembly transcript 1 (NEAT1) has been implicated in various cellular processes, but its role in granulosa cell function remains unclear.

View Article and Find Full Text PDF

Lipid nanoparticles deliver DNA-encoded biologics and induce potent protective immunity.

Mol Cancer

January 2025

Department of Medicine, Section of Epidemiology and Population Sciences, Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, 77030, USA.

Lipid nanoparticles (LNPs) for mRNA delivery have advanced significantly, but LNP-mediated DNA delivery still faces clinical challenges. This study compared various LNP formulations for delivering DNA-encoded biologics, assessing their expression efficacy and the protective immunity generated by LNP-encapsulated DNA in different models. The LNP formulation used in Moderna's Spikevax mRNA vaccine (LNP-M) demonstrated a stable nanoparticle structure, high expression efficiency, and low toxicity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!