A patent vascular access is of crucial importance for patients on dialysis. There is no literature describing the success rate and complications of creating dialysis fistulae in a paretic arm. In addition, the risk for non-maturation of dialysis fistula is thought to be high due to the inactivity, muscle atrophy, vascular changes, and higher risk of thrombosis in paretic limbs. Here we describe a case of a successful creation and maturation of a native dialysis fistula.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1177/11297298231168673 | DOI Listing |
Converg Clin Eng Res Neurorehabilit V (2024)
December 2024
University of Illinois Urbana-Champaign, Urbana, IL, USA; Carle Foundation Hospital, Urbana, IL, USA; Department of Physical Therapy and Human Movement Sciences, Northwestern University, Chicago, IL 60611, USA.
Sensory feedback is crucial for motor control as it establishes the internal representation of motion. This study investigates changes in sensory feedback in hemiparetic stroke by analyzing the laterality index (LI) of somatosensory evoked potentials (SEPs) during movements of the paretic arm, focusing on a shift from the lesioned to the contralesional hemisphere. Three chronic stroke participants performed isometric lifts of their paretic arms at two different levels of their maximum voluntary contraction while receiving tactile finger stimulation.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Rehabilitation Sciences, Ghent University, Ghent, Belgium.
Background: Increasing one's walking speed is an important goal in post-stroke gait rehabilitation. Insufficient arm swing in people post-stroke might limit their ability to propel the body forward and increase walking speed.
Purpose: To investigate the speed-dependent changes (and their contributing factors) in the arm swing of persons post-stroke.
J Neuroeng Rehabil
December 2024
Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, USA.
Background: This research aims to improve the control of assistive devices for individuals with hemiparesis after stroke by providing intuitive and proportional motor control. Stroke is the leading cause of disability in the United States, with 80% of stroke-related disability coming in the form of hemiparesis, presented as weakness or paresis on half of the body. Current assistive exoskeletonscontrolled via electromyography do not allow for fine force regulation.
View Article and Find Full Text PDFAnn Neurol
December 2024
Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA.
Objective: Vagus nerve stimulation (VNS) paired with rehabilitation therapy improved motor status compared to rehabilitation alone in the phase III VNS-REHAB stroke trial, but treatment response was variable and not associated with any clinical measures acquired at baseline, such as age or side of paresis. We hypothesized that neuroimaging measures would be associated with treatment-related gains, examining performance of regional injury measures versus global brain health measures in parallel with clinical measures.
Methods: Baseline magnetic resonance imaging (MRI) scans in the VNS-REHAB trial were used to derive regional injury measures (extent of injury to corticospinal tract, the primary regional measure; plus extent of injury to precentral gyrus and postcentral gyrus; lesion volume; and lesion topography) and global brain health measures (degree of white matter hyperintensities, the primary global brain measure; plus volumes of cerebrospinal fluid, cortical gray matter, white matter, each thalamus, and total brain).
Proc IEEE RAS EMBS Int Conf Biomed Robot Biomechatron
September 2024
Department of Mechanical Engineering, Columbia University, New York, NY 10027, USA.
Increased effort during use of the paretic arm and hand can provoke involuntary abnormal synergy patterns and amplify stiffness effects of muscle tone for individuals after stroke, which can add difficulty for user-controlled devices to assist hand movement during functional tasks. We study how volitional effort, exerted in an attempt to open or close the hand, affects resistance to robot-assisted movement at the finger level. We perform experiments with three chronic stroke survivors to measure changes in stiffness when the user is actively exerting effort to activate ipsilateral EMG-controlled robot-assisted hand movements, compared with when the fingers are passively stretched, as well as overall effects from sustained active engagement and use.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!