Considering the role of glycolysis inhibition as a novel therapeutic strategy for cancer, including breast cancer (BC), we wondered whether glycolysis could affect BC progression by regulating transmembrane -mannosyltransferase-targeting cadherins 3 (TMTC3). Following the intervention, lactic acid production in BC cells was monitored, and viability, proliferation, and apoptosis assays were performed. The expressions of TMTC3 and endoplasmic reticulum (ER) stress- and apoptosis-related factors Caspase-12, C/EBP homologous protein (CHOP), glucose-regulated protein 78 (GRP78), B-cell lymphoma-2 (Bcl-2), and Bcl-2 associated X (Bax) were quantified. TMTC3 was lowly expressed in BC tissue and cell. The promotion of glycolysis via glucose represses TMTC3 expression and apoptosis yet enhances lactic acid production and growth of BC cell, along with promoted levels of Caspase-12, CHOP, GRP78, and Bcl-2 yet repressed level of Bax, while the contrary results were evidenced after 2-deoxyglycouse intervention. Overexpressed TMTC3 additionally abrogated the effects of glycolysis on increasing the viability and proliferation yet inhibiting the apoptosis of BC cells, with the increased expressions of Caspase-12, CHOP, and GRP78, and Bcl-2 yet decreased level of Bax. Collectively, inhibiting glycolysis restrained the growth and attenuated the ER stress of BC cell by regulating TMTC3.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10105522 | PMC |
http://dx.doi.org/10.1515/med-2023-0635 | DOI Listing |
Ecotoxicol Environ Saf
January 2025
College of Pharmacy, Korea University, Sejong 30019, South Korea. Electronic address:
The widespread use of disinfectants, particularly during the coronavirus disease (COVID-19) pandemic, has significantly increased human exposure to biocides, raising concerns about their potential health risks, especially when inhaled. Benzalkonium chloride (BKC), a quaternary ammonium compound commonly used as a disinfectant and preservative, is a notable example because it is frequently used in household products and medical settings. Despite its broad usage, limited research has been conducted on the respiratory and systemic toxicities of BKC.
View Article and Find Full Text PDFJ Food Drug Anal
December 2024
Jiangxi Key Laboratory of Natural Microbial Medicine Research, College of Life Sciences, Jiangxi Science & Technology Normal University, Nanchang 330013, Jiangxi, China.
Cordycepin, a key bioactive compound produced by Cordyceps militaris, faces the challenge of low productivity for commercial use. In this study, alanine supplementation in Cordyceps militaris boosted cordycepin production, peaking at 3 mg/g with 12 g/L concentration. Transcriptome analysis revealed 1711 differentially expressed genes, Pathway analysis indicates that protein processing in the endoplasmic reticulum was the most affected pathway.
View Article and Find Full Text PDFJ Orthop Surg Res
January 2025
Department of Knee Surgery, The First Hospital of Hebei Medical University, Hebei, China.
Objective: This study aims to explore the potential role of mesenchymal stem cells (MSCs) in the treatment of osteoarthritis (OA), particularly the function of the NOTCH1 signaling pathway in maintaining the stemness of MSCs and in chondrocyte differentiation.
Methods: Utilizing diverse analytical techniques on an osteoarthritis dataset, we unveil distinct gene expression patterns and regulatory relationships, shedding light on potential mechanisms underlying the disease. Techniques used include the culture of MSCs, induction of differentiation into chondrocytes, establishment of stable cell lines, Western Blot, and immunofluorescence.
J Exp Clin Cancer Res
January 2025
Department of Thoracic Surgery, Shanghai Tongji Hospital Affiliated With Tongji University, Shanghai, 200065, P. R. China.
EMBO J
January 2025
Cambridge Institute for Medical Research, University of Cambridge, Cambridge, CB2 0XY, UK.
Biogenesis of membrane-bound organelles involves the synthesis, remodeling, and degradation of their constituent phospholipids. How these pathways regulate organelle size remains poorly understood. Here we demonstrate that a lipid-degradation pathway inhibits expansion of the endoplasmic reticulum (ER) membrane.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!