Background: The last taxonomic account of Olea recognises six subspecies within Olea europaea L., including the Mediterranean olive tree (subsp. europaea) and five other subspecies (laperrinei, guanchica, maroccana, cerasiformis, and cuspidata) distributed across the Old World, including Macaronesian islands. The evolutionary history of this monophyletic group (O. europaea complex) has revealed a reticulated scenario involving hybridization and polyploidization events, leading to the presence of a polyploid series associated with the subspecies. However, how the polyploids originated, and how the different subspecies contributed to the domestication of the cultivated olive are questions still debated. Tracing the recent evolution and genetic diversification of the species is key for the management and preservation of its genetic resources. To study the recent history of the O. europaea complex, we compared newly sequenced and available genomes for 27 individuals representing the six subspecies.
Results: Our results show discordance between current subspecies distributions and phylogenomic patterns, which support intricate biogeographic patterns. The subspecies guanchica, restricted to the Canary Islands, is closely related to subsp. europaea, and shows a high genetic diversity. The subsp. laperrinei, restricted now to high mountains of the Sahara desert, and the Canarian subsp. guanchica contributed to the formation of the allotetraploid subsp. cerasiformis (Madeira islands) and the allohexaploid subsp. maroccana (western Sahara region). Our phylogenomic data support the recognition of one more taxon (subsp. ferruginea) for the Asian populations, which is clearly segregated from the African subsp. cuspidata.
Conclusions: In sum, the O. europaea complex underwent several processes of hybridization, polyploidy, and geographical isolation resulting in seven independent lineages with certain morphological traits recognised into subspecies.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10111821 | PMC |
http://dx.doi.org/10.1186/s12915-023-01583-5 | DOI Listing |
Georgian Med News
November 2024
1Department of Dentistry, Alma Mater Europaea Campus College Rezonanca; 2Department of Dermatology, Alma Mater Europaea Campus College Rezonanca, Prishtina, Kosovo.
Introduction: Dental caries is the most prevalent chronic disease worldwide. It is a disease characterized by multifactorial etiology and slow evolution leading to the destruction of hard tooth tissue.
Purpose: Throughout this article we aim to review some important aspects related to dental caries and the main etiological factors in order to gain knowledge for oral health professionals in the treatment and prevention of caries.
Acta Physiol (Oxf)
February 2025
Faculty of Medicine, University of Maribor, Maribor, Slovenia.
Background: The crucial steps in beta cell stimulus-secretion coupling upon stimulation with glucose are oscillatory changes in metabolism, membrane potential, intracellular calcium concentration, and exocytosis. The changes in membrane potential consist of bursts of spikes, with silent phases between them being dominated by membrane repolarization and absence of spikes. Assessing intra- and intercellular coupling at the multicellular level is possible with ever-increasing detail, but our current ability to simultaneously resolve spikes from many beta cells remains limited to double-impalement electrophysiological recordings.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Research Centre for Olive, Fruit and Citrus Crops, Council for Agricultural Research and Economics (CREA), Via Settimio Severo 83, 87036 Rende, CS, Italy.
A circadian clock (CC) has evolved in plants that synchronizes their growth and development with daily and seasonal cycles. A properly functioning circadian clock contributes to increasing plant growth, reproduction, and competitiveness. In plants, continuous light treatment has been a successful approach for obtaining novel knowledge about the circadian clock.
View Article and Find Full Text PDFPlants (Basel)
December 2024
Department of Agriculture and Nutrition, Institute of Agriculture and Tourism, Karla Huguesa 8, 52440 Poreč, Croatia.
Studies on selenium (Se) and silicon (Si) foliar biostimulation of different plants have been shown to affect concentrations of phenolic compounds. However, their effects on olive ( L.) primary and secondary metabolites have not been fully investigated.
View Article and Find Full Text PDFFront Plant Sci
December 2024
Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!