Context: Nanomaterials enjoy a great surface-to-surface area ratio, small size, extremely high stability, satisfactory bio-compatibility, improved permeability, specificity in receptor targeting, and tunable lifetime. This paper investigates alkali metal-doped borospherenes M@C4B32 (in which M denotes K, Na, and Li) as a highly efficient alternative for the delivery of drugs using density functional theory (DFT) calculations. A borospherene with a B nanocage doped with four C atoms (i.e., C4B32) recently showed promising performance. Therefore, the present work investigates C4B32 nanoclusters doped with alkali metals for the effective delivery of drugs.

Methods: This paper primarily seeks to evaluate the interaction between thioguanine (TG) as a cancer drug and pristine M@C4B32 through DFT (PBE/6-31 + G (d)) calculations. The UV-Vis spectroscopy indicated a redshift in the complex electronic spectra to higher wavelengths (i.e., lower energy levels). Hence, K@C4B32 was concluded to be effective in TG delivery.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00894-023-05548-xDOI Listing

Publication Analysis

Top Keywords

alkali metal-doped
8
metal-doped borospherenes
8
highly efficient
8
efficient alternative
8
effective delivery
8
borospherenes m@cb
4
m@cb m = k
4
m = k highly
4
alternative drug
4
delivery
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!