Psychedelic drugs, including lysergic acid diethylamide (LSD) and other agonists of the serotonin 2A receptor (5HT2A-R), induce drastic changes in subjective experience, and provide a unique opportunity to study the neurobiological basis of consciousness. One of the most notable neurophysiological signatures of psychedelics, increased entropy in spontaneous neural activity, is thought to be of relevance to the psychedelic experience, mediating both acute alterations in consciousness and long-term effects. However, no clear mechanistic explanation for this entropy increase has been put forward so far. We sought to do this here by building upon a recent whole-brain model of serotonergic neuromodulation, to study the entropic effects of 5HT2A-R activation. Our results reproduce the overall entropy increase observed in previous experiments in vivo, providing the first model-based explanation for this phenomenon. We also found that entropy changes were not uniform across the brain: entropy increased in all regions, but the larger effect were localised in visuo-occipital regions. Interestingly, at the whole-brain level, this reconfiguration was not well explained by 5HT2A-R density, but related closely to the topological properties of the brain's anatomical connectivity. These results help us understand the mechanisms underlying the psychedelic state and, more generally, the pharmacological modulation of whole-brain activity.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10110594 | PMC |
http://dx.doi.org/10.1038/s41598-023-32649-7 | DOI Listing |
Nat Commun
January 2025
Beijing Advanced Innovation Center for Materials Genome Engineering, Department of Physical Chemistry, University of Science and Technology Beijing, Beijing, China.
Electric field induced antiferroelectric-ferroelectric phase transition is a double-edged sword for energy storage properties, which not only offers a congenital superiority with substantial energy storage density but also poses significant challenges such as large polarization hysteresis and poor efficiency, deteriorating the operation and service life of capacitors. Here, entropy increase effect is utilized to simultaneously break the long-range antiferroelectric order and locally adjust the fourfold commensurate modulated polarization configuration, leading to a breakthrough in the trade-off between recoverable energy storge density (14.8 J cm) and efficiency (90.
View Article and Find Full Text PDFJ Colloid Interface Sci
January 2025
State Key Laboratory of Chem/Bio-Sensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082 PR China. Electronic address:
High-entropy phosphides (HEPs) have garnered increasing interest as innovative electrocatalysts for water splitting, highlighted by their distinctive catalytic activity, elemental synergy, and tunable electronic configuration. Herein, a novel electrode comprising CoNiCuZnFeP nanocubes with rich phosphorus vacancies was fabricated through coprecipitation and phosphorization two-step method. The synergistic interaction among metal elements and the modulation of the electronic configuration by phosphorus vacancies augmentation enhance the catalytic performance for both the oxygen evolution reaction (OER) and hydrogen evolution reaction (HER).
View Article and Find Full Text PDFSci Rep
January 2025
Department of Sport & Health, Exercise Science & Neuroscience Unit Universität Paderborn, Warburger Straße 100, 33098, Paderborn, Germany.
Anterior cruciate ligament injuries (ACLi) impact football players substantially leading to performance declines and premature career endings. Emerging evidence suggests that ACLi should be viewed not merely as peripheral injuries but as complex conditions with neurophysiological aspects. The objective of the present study was to compare kicking performance and associated cortical activity between injured and healthy players.
View Article and Find Full Text PDFJ Phys Chem A
January 2025
Institute of Materials Engineering, University of Silesia in Katowice, 75 Pułku Piechoty 1A, 41-500 Chorzów, Poland.
The ubiquitous nature of thermal fluctuations poses a limitation on the identification of crystal structures. However, the trajectory of an atom carries a fingerprint of its surroundings. This rationalizes the search for a method that can determine the local atomic configuration via the analysis of the movement of an individual atom.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China.
Electrocatalytic nitrate reduction to ammonia (eNRA) is a promising route toward environmental sustainability and clean energy. However, its efficiency is often limited by the slow conversion of intermediates due to spin-forbidden processes. Here, we introduce a novel A-site high-entropy strategy to develop a new perovskite oxide (LaPrNdBaSr)CoO (LPNBSC) for eNRA.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!