Mapping tropical forest aboveground biomass (AGB) is important for quantifying emissions from land use change and evaluating climate mitigation strategies but remains a challenging problem for remote sensing observations. Here, we evaluate the capability of mapping AGB across a dense tropical forest using tomographic Synthetic Aperture Radar (TomoSAR) measurements at P-band frequency that will be available from the European Space Agency's BIOMASS mission in 2024. To retrieve AGB, we compare three different TomoSAR reconstruction algorithms, back-projection (BP), Capon, and MUltiple SIgnal Classification (MUSIC), and validate AGB estimation from models using TomoSAR variables: backscattered power at 30 m height, forest height (FH), backscatter power metric (Q), and their combination. TropiSAR airborne campaign data in French Guiana, inventory plots, and airborne LiDAR measurements are used as reference data to develop models and calculate the AGB estimation uncertainty. We used univariate and multivariate regression models to estimate AGB at 4-ha grid cells, the nominal resolution of the BIOMASS mission. Our results show that the BP-based variables produced better AGB estimates compared to their counterparts, suggesting a more straightforward TomoSAR processing for the mission. The tomographic FH and AGB estimation have an average relative uncertainty of less than 10% with negligible systematic error across the entire biomass range (~ 200-500 Mg ha). We show that the backscattered power at 30 m height at HV polarization is the best single measurement to estimate AGB with significantly better accuracy than the LiDAR height metrics, and combining it with FH improved the accuracy of AGB estimation to less than 7% of the mean. Our study implies that using multiple information from P-band TomoSAR data from the BIOMASS mission provides a new capability to map tropical forest biomass and its changes accurately.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10110524PMC
http://dx.doi.org/10.1038/s41598-023-33311-yDOI Listing

Publication Analysis

Top Keywords

tropical forest
16
agb estimation
16
biomass mission
12
agb
10
mapping tropical
8
forest aboveground
8
aboveground biomass
8
backscattered power
8
power 30 m
8
30 m height
8

Similar Publications

Root nodule symbiosis is traditionally recognized in the Fabales, Fagales, Cucurbitales, and Rosales orders within the Rosid I clade of angiosperms. However, ambiguous root nodule formation has been reported in Zygophyllaceae and Roystonea regia (Arecaceae), although a detailed analysis has yet to be conducted. We aimed to perform morphological analyses of root structures in these plants and utilize metagenomic techniques to identify and characterize the bacterial populations within the nodule-like structures.

View Article and Find Full Text PDF

Climate change and human activities are the primary drivers influencing changes in runoff dynamics. However, current understanding of future hydrological processes under scenarios of gradual climate change and escalating human activities remains uncertain, particularly in tropical regions affected by deforestation. Based on this, we employed the SWAT model coupled with the near future (2021-2040) and middle future (2041-2060) global climate models (GCMs) under four shared socioeconomic pathways (SSP1-2.

View Article and Find Full Text PDF

Ecological Corridors (ECs) are proposed as cost-effective solutions to improve ecological connectivity in fragmented landscapes. Planning the implementation of ECs must take into account landscape features as they affect the viability of the endeavor and the ECs associated costs. A novel set of geoprocessing tools were used to assess (i) economic viability; (ii) socioeconomic cost-effectiveness; and (iii) to determine priority targets for ECs establishment in a highly fragmented region of Atlantic Forest.

View Article and Find Full Text PDF

Background: Garuga pinnata Roxb., a member of family Burseraceae, is a commonly grown plant in south east Asia including India in tropical rain forests predominately. Apart from folkloric use, important anti-inflammatory and antiasthamatic activity of this plant has been revealed.

View Article and Find Full Text PDF

Plant-plant interactions are major determinants of the dynamics of terrestrial ecosystems. There is a long tradition in the study of these interactions, their mechanisms and their consequences using experimental, observational and theoretical approaches. Empirical studies overwhelmingly focus at the level of species pairs or small sets of species.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!