AI Article Synopsis

  • The immune and central nervous systems interact closely, and disruptions in this interaction may be linked to various neuropsychiatric disorders.
  • Chronic infections, particularly with Mycobacterium avium, have been shown to affect the immune system and cytokine levels, but their effects on mood and behavior are less clear.
  • In a study using different mouse strains infected with M. avium, researchers found changes in cytokine expression in the spleen and hippocampus, but no significant changes in behaviors related to locomotion, anxiety, or depression.

Article Abstract

One of the most remarkable findings in the immunology and neuroscience fields was the discovery of the bidirectional interaction between the immune and the central nervous systems. This interplay is tightly regulated to maintain homeostasis in physiological conditions. Disruption in this interplay has been suggested to be associated with several neuropsychiatric disorders. Most studies addressing the impact of an immune system disruption on behavioral alterations focus on acute pro-inflammatory responses. However, chronic infections are highly prevalent and associated with an altered cytokine milieu that persists over time. Studies addressing the potential effect of mycobacterial infections on mood behavior originated discordant results and this relationship needs to be further addressed. To increase our understanding on the effect of chronic infections on the central nervous system, we evaluated the role of Mycobacterium avium infection. A model of peripheral chronic infection with M. avium in female from three mouse strains (Balb/c, C57BL/6, and CD-1) was used. The effect of the infection was evaluated in the cytokine expression profile (spleen and hippocampus), hippocampal cell proliferation, neuronal plasticity, serum corticosterone production and mood behavior. The results show that M. avium peripheral chronic infection induces alterations not just in the peripheral immune system but also in the central nervous system, namely in the hippocampus. Interestingly, the cytokine expression profile alterations vary between mouse strains, and are not accompanied by hippocampal cell proliferation or neuronal plasticity changes. Accordingly, no differences were observed in locomotor, anxious and depressive-like behaviors, in any of the mouse strains used. We conclude that the M. avium 2447 infection-induced alterations in the cytokine expression profile, both in the periphery and the hippocampus, are insufficient to alter hippocampal plasticity and behavior.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10110542PMC
http://dx.doi.org/10.1038/s41598-023-33121-2DOI Listing

Publication Analysis

Top Keywords

cytokine expression
16
expression profile
16
mouse strains
16
central nervous
12
mycobacterium avium
8
avium infection
8
three mouse
8
studies addressing
8
immune system
8
chronic infections
8

Similar Publications

The present study was aimed to produce the recombinant protein of allergen component 32 (Tyr p 32) and to identify its immunoreactivity. The cDNA encoding Tyr p 32 was amplified from total RNA of and inserted into pET-28a (+) vector. The constructed plasmid pET-28a (+)-Tyr p 32 was transformed into BL21 (DE3) receptor cells.

View Article and Find Full Text PDF

Inflammation is a major mechanism of photoreceptor cell death in the retina during macular degeneration leading to the blindness. In this study, we investigated the role of the kinase molecule Zap70, which is an inflammatory regulator of the systemic immune system, to elucidate the control mechanism of inflammation in the retina. We observed activated microglial cells migrated and populated the retinal layer following blue LED-induced photoreceptor degeneration and activated microglial cells in the LED-injured retina expressed Zap70, unlike the inactive microglial cells in the normal retina.

View Article and Find Full Text PDF

Ethnopharmacological Relevance: Lichong decoction (LD) is extensively employed in the treatment of uterine leiomyoma (ULM), demonstrating remarkable clinical effectiveness with an absence of notable adverse reactions. Its composition aligns with the traditional Chinese medicine (TCM) etiology of ULM, making it a highly suitable therapy. Nonetheless, the precise mechanisms underlying its therapeutic actions remain to be fully elucidated.

View Article and Find Full Text PDF

Didecyldimethylammonium chloride-induced lung fibrosis may be associated with phospholipidosis.

Toxicol Appl Pharmacol

December 2024

College of Medicine, Graduate School, Kyung Hee University, 02447, Republic of Korea; Division of Cardiology, Department of Internal Medicine, Kyung-Hee University Hospital, Kyung Hee University, 02447, Republic of Korea. Electronic address:

In the current study, we dosed Didecyldimethylammonium chloride (DDAC) in mice by pharyngeal aspiration for 28 days or 90 days (weekly) and tried to elucidate the relationship between lamellar body formation and the lesions. When exposed for 28 days (0, 5, 10, 50, and 100 μg/head), all the mice in the 50 and 100 μg/head groups died since Day 2 after the third dosing (Day 16 after the first dosing). Edema, necrosis of bronchiolar and alveolar epithelium, and fibrinous exudate were observed in the lungs of all the dead mice, and chronic inflammatory lesions were observed in the lung tissues of alive mice.

View Article and Find Full Text PDF

Rheumatoid arthritis (RA) is a chronic inflammatory disease that leads to joint deformity and ultimately disability. The metabolite of quercetin, 4-Methylcatechol (4-MC), has been acknowledged for its anti-inflammatory and antioxidant properties; however, the protective effects of 4-MC on RA and its underlying mechanisms remain incompletely elucidated. In a collagen-induced arthritis (CIA) model, we observed that 4-MC effectively mitigated joint inflammation and bone destruction in CIA mice.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!