Minimally invasive boron neutron capture therapy (BNCT) is an elegant approach for cancer treatment. The highly selective and efficient deliverability of boron agents to cancer cells is the key to maximizing the therapeutic benefits of BNCT. In addition, enhancement of the frequencies to achieve boron neutron capture reaction is also significant in improving therapeutic efficacy by providing a highly concentrated boron agent in each boron nanoparticle. As the density of the thermal neutron beam remains low, it is unable to induce high-efficiency cell destruction. Herein, we report phospholipid-coated boronic oxide nanoparticles as agents for BNCT that can provide a highly concentrated boron atom in each nanoparticle. The current system exhibited in vitro BNCT activity seven times higher than that of commercial boron agents. Furthermore, the system could penetrate cancer spheroids deeply, efficiently suppressing thermal neutron irradiation-induced growth.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cbic.202300186DOI Listing

Publication Analysis

Top Keywords

boron agents
12
boron neutron
12
neutron capture
12
boron
9
phospholipid-coated boronic
8
boronic oxide
8
oxide nanoparticles
8
capture therapy
8
highly concentrated
8
concentrated boron
8

Similar Publications

β-Lactams are the most widely used antibiotics for the treatment of bacterial infections because of their proven track record of safety and efficacy. However, susceptibility to β-lactam antibiotics is continually eroded by resistance mechanisms. Emerging multidrug-resistant (MDR) strains possessing altered alleles (encoding PBP2) pose a global health emergency as they threaten the utility of ceftriaxone, the last remaining outpatient antibiotic.

View Article and Find Full Text PDF

A Water-Soluble Small Molecule Boron Carrier Targeting Biotin Receptors for Neutron Capture Therapy.

ACS Omega

December 2024

School of Life Science and Technology, Institute of Science Tokyo, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan.

A critical challenge in boron neutron capture therapy (BNCT) is expanding its effectiveness through the development of novel boron agents with different mechanisms of action than the approved drug 4-borono-l-phenylalanine (BPA). In this study, we developed a small molecule boron carrier, biotinyl--dodecaborate conjugate with an iodophenyl moiety (BBC-IP), incorporating biotin as a ligand for biotin receptors overexpressed in various cancer cells, alongside an albumin ligand and boron source. BBC-IP exhibited high water solubility, minimal cytotoxicity, and superior cellular uptake compared to BPA in both human and mouse cancer cells.

View Article and Find Full Text PDF

Advances in cross-coupling and oxidative coupling reactions of NH-sulfoximines - a review.

Chem Commun (Camb)

January 2025

College of Materials, Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu 610059, China.

Due to the special structure and physicochemical properties of sulfoximines, research on sulfoximines has achieved great progress in recent decades, especially in chemical and medicinal fields. This review highlights recent advancements in the N-functionalization of NH-sulfoximines, focusing on classical cross-coupling reactions with electrophilic agents and oxidative coupling reactions with extensive organic compounds, including specific (hetero)arenes, alkenes (1,4-naphthoquinones), alkanes (cyclohexanes), nucleophiles (thiols, disulfides, sulfinates, diarylphosphine oxides), organyl boronic acids, and arylhydrazines. Transition metal-catalyzed, metal-free, electrochemical and radical oxidative coupling reactions are discussed.

View Article and Find Full Text PDF

[Clinical Characteristics and Risk Factors of Infection in Hospitalized Patients with Multiple Myeloma with New Generation Therapies].

Zhongguo Shi Yan Xue Ye Xue Za Zhi

December 2024

The Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital,Taiyuan 030000, Shanxi Province, China.

Article Synopsis
  • The study aimed to assess infection risks and characteristics in multiple myeloma patients receiving new therapies, involving 155 patients from a hospital over 5 years.
  • The analysis identified 242 infection episodes, predominantly clinically defined infections, with lower respiratory tract being the most affected area.
  • Key risk factors for developing infections included having advanced disease (ISS stage III), receiving multiple lines of treatment, and being frail.
View Article and Find Full Text PDF

Effect of boron oxide on stability of high-ferrite Portland cement clinker in low-temperature calcination.

Sci Rep

December 2024

Huaxin Cement Co., Ltd, Huaxin Building, No. 426, Gaoxin Avenue, Donghu New Technology Development Zone, Wuhan, 430070, China.

Article Synopsis
  • The study examines the difficulties of producing high-ferrite Portland cement clinker at low temperatures and investigates boron oxide as a potential stabilizing agent.
  • Researchers found that at 1350 °C, the HFPC clinker suffers from severe pulverization due to a metastable phase, prompting the exploration of various stabilizers.
  • While multiple agents showed promise, boron oxide emerged as the best option, with a maximum recommended content of 1% to avoid destabilization that impacts early strength development, highlighting a pathway to lower energy use and emissions in cement production.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!