Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
A novel donepezil-caffeic acid (DP-CA) hybrid molecule was designed, synthesis, and investigated by molecular modeling. Its biological activity and protective effect were investigated by the IR spectroscopy, H and C NMR spectroscopy, and mass spectrometry. DP-CA was highly active against acetylcholine esterase and inhibited it at the micromolar concentrations. Fluorescence and UV-Vis spectroscopy studies showed strong binding of DP-CA to DNA. Moreover, DP-CA exhibited protective effects against H2O2-induced toxicity in U-118 MG glioblastoma cells. Finally, molecular docking showed a high affinity of DP-CA in all concentrations, and the active 4EY7 site exhibited essential residues with polar and apolar contacts. Taken together, these findings indicate that DP-CA could be a prospective multifunctional agent for the treatment of neurodegenerative diseases.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1134/S0006297923010054 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!