Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
MoSe 2H/1T hybrid nanoparticles are prepared by femtosecond laser ablation of MoSe powder in isopropyl alcohol with different laser powers and ablation times, and their formation mechanisms and photothermal conversion efficiencies (PTCEs) are studied. Two types of spherical nanoparticles are observed. The first type is onion-structured nanoparticles that are formed by nucleation on the surfaces of melted droplets followed by inward growth of {002} planes of MoSe . The second type is polycrystalline nanoparticles, formed by coalescence of crystalline nanoclusters fragmented from the powder during the laser ablation. The nanoparticle size in all samples shows a bimodal distribution, corresponding to different fragmentation mechanisms. The 2H-to-1T phase transition in the nanoparticles is likely caused by electron doping from the laser-induced plasma. The PTCEs of the nanoparticles increase with laser power and ablation time; the highest PTCE is around 38%. After examining the bandgaps and the Urbach energies of the nanoparticles, it is found that the high PTCEs are primarily attributed to defects and structural disorder in the laser-synthesized nanoparticles, which allow absorption of photons with energies smaller than the bandgap energy and facilitate non-radiative recombination of photoexcited carriers.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/adma.202301129 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!