Substrate-supported catalysts with atomically dispersed metal centers are promising for driving the carbon dioxide reduction reaction (CORR) to produce value-added chemicals; however, regulating the size of exposed catalysts and optimizing their coordination chemistry remain challenging. In this study, we have devised a simple and versatile high-energy pulsed laser method for the enrichment of a Bi "single atom" (SA) with a controlled first coordination sphere on a time scale of nanoseconds. We identify the mechanistic bifurcation routes over a Bi SA that selectively produce either formate or syngas when bound to C or N atoms, respectively. In particular, C-stabilized Bi (Bi-C) exhibits a maximum formate partial current density of -29.3 mA cm alongside a TOF value of 2.64 s at -1.05 V RHE, representing one of the best SA-based candidates for CO-to-formate conversion. Our results demonstrate that the switchable selectivity arises from the different coupling states and metal-support interactions between the central Bi atom and adjacent atoms, which modify the hybridizations between the Bi center and *OCHO/*COOH intermediates, alter the energy barriers of the rate-determining steps, and ultimately trigger the branched reaction pathways after CO adsorption. This work demonstrates a practical and universal ultrafast laser approach to a wide range of metal-substrate materials for tailoring the fine structures and catalytic properties of the supported catalysts and provides atomic-level insights into the mechanisms of the CORR on ligand-modified Bi SAs, with potential applications in various fields.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsnano.3c01897DOI Listing

Publication Analysis

Top Keywords

carbon dioxide
8
dioxide reduction
8
nanosecond laser
4
laser confined
4
confined bismuth
4
bismuth moiety
4
moiety tunable
4
tunable structures
4
structures graphene
4
graphene carbon
4

Similar Publications

Generalized Hartree-Fock (GHF) is a long-established electronic structure method that can lower the energy (compared to spin-restricted variants) by breaking physical wave function symmetries, namely and . After an exposition of GHF theory, we assess the use of GHF trial wave functions in phaseless auxiliary field quantum Monte Carlo (ph-AFQMC-G) calculations of strongly correlated molecular systems including symmetrically stretched hydrogen rings, carbon dioxide, and dioxygen. Imaginary time propagation is able to restore symmetry and yields energies of comparable or better accuracy than CCSD(T) with unrestricted HF and GHF references, and consistently smooth dissociation curves─a remarkable result given the relative scalability of ph-AFQMC-G to larger system sizes.

View Article and Find Full Text PDF

Carbon dioxide injection through coronary vein puncture can greatly reduce complications from epicardial access. We reported a case of ventricular tachycardia that was successfully ablated by this procedure under ECMO support.

View Article and Find Full Text PDF

The strong influence of surface adsorbates on the morphology of a catalyst is exemplified by studying a silver surface with and without deposited zinc oxide nanoparticles upon exposure to reaction gases used for carbon dioxide hydrogenation. Ambient pressure X-ray photoelectron spectroscopy and scanning tunneling microscopy measurements indicate accumulation of carbon deposits on the catalyst surface at 200 °C. While oxygen-free carbon species observed on pure silver show a strong interaction and decorate the atomic steps on the catalyst surface, this decoration is not observed for the oxygen-containing species observed on the silver surface with additional zinc oxide nanoparticles.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!