Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Objective: An accurate and timely diagnosis of burn severity is critical to ensure a positive outcome. Laser Doppler imaging (LDI) has become a very useful tool for this task. It measures the perfusion of the burn and estimates its potential healing time. LDIs generate a 6-color palette image, with each color representing a healing time. This technique has very high costs associated. In resource-limited areas, such as low- and middle-income countries or remote locations like space, where access to specialized burn care is inadequate, more affordable and portable tools are required. This study proposes a novel image-to-image translation approach to estimate burn healing times, using a digital image to approximate the LDI.
Methods: This approach consists of a U-net architecture with a VGG-based encoder and applies the concept of ordinal classification. Paired digital and LDI images of burns were collected. The performance was evaluated with 10-fold cross-validation, mean absolute error (MAE), and color distribution differences between the ground truth and the estimated LDI.
Results: Results showed a satisfactory performance in terms of low MAE ( 0.2370 ±0.0086). However, the unbalanced distribution of colors in the data affects this performance.
Significance: This novel and unique approach serves as a basis for developing more accessible support tools in the burn care environment in resource-limited areas.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TBME.2023.3267600 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!