A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

This population does not exist: learning the distribution of evolutionary histories with generative adversarial networks. | LitMetric

Numerous studies over the last decade have demonstrated the utility of machine learning methods when applied to population genetic tasks. More recent studies show the potential of deep-learning methods in particular, which allow researchers to approach problems without making prior assumptions about how the data should be summarized or manipulated, instead learning their own internal representation of the data in an attempt to maximize inferential accuracy. One type of deep neural network, called Generative Adversarial Networks (GANs), can even be used to generate new data, and this approach has been used to create individual artificial human genomes free from privacy concerns. In this study, we further explore the application of GANs in population genetics by designing and training a network to learn the statistical distribution of population genetic alignments (i.e. data sets consisting of sequences from an entire population sample) under several diverse evolutionary histories-the first GAN capable of performing this task. After testing multiple different neural network architectures, we report the results of a fully differentiable Deep-Convolutional Wasserstein GAN with gradient penalty that is capable of generating artificial examples of population genetic alignments that successfully mimic key aspects of the training data, including the site-frequency spectrum, differentiation between populations, and patterns of linkage disequilibrium. We demonstrate consistent training success across various evolutionary models, including models of panmictic and subdivided populations, populations at equilibrium and experiencing changes in size, and populations experiencing either no selection or positive selection of various strengths, all without the need for extensive hyperparameter tuning. Overall, our findings highlight the ability of GANs to learn and mimic population genetic data and suggest future areas where this work can be applied in population genetics research that we discuss herein.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10213497PMC
http://dx.doi.org/10.1093/genetics/iyad063DOI Listing

Publication Analysis

Top Keywords

population genetic
16
population
8
generative adversarial
8
adversarial networks
8
applied population
8
neural network
8
population genetics
8
genetic alignments
8
data
6
population exist
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!