A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Specific Distribution of Digital Gait Biomarkers in Parkinson's Disease Using Body-Worn Sensors and Machine Learning. | LitMetric

Gait impairment leads to reduced social activities and low quality of life in people with Parkinson's disease (PD). PD is associated with unique gait signs and distributions of gait features. The assessment of gait characteristics is crucial in the diagnosis and treatment of PD. At present, the number and distribution of gait features associated with different PD stages are not clear. Here, we used whole-body multinode wearable devices combined with machine learning to build a classification model of early PD (EPD) and mild PD (MPD). Our model exhibited significantly improved accuracy for the EPD and MPD groups compared with the healthy control (HC) group (EPD vs HC accuracy = 0.88, kappa = 0.75, AUC = 0.88; MPD vs HC accuracy = 0.94, kappa = 0.84, AUC = 0.90). Furthermore, the distribution of gait features was distinguishable among the HC, EPD, and MPD groups (EPD based on variability features [40%]; MPD based on amplitude features [30%]). Here, we showed promising gait models for PD classification and provided reliable gait features for distinguishing different PD stages. Further multicenter clinical studies are needed to generalize the findings.

Download full-text PDF

Source
http://dx.doi.org/10.1093/gerona/glad101DOI Listing

Publication Analysis

Top Keywords

gait features
16
gait
9
parkinson's disease
8
machine learning
8
distribution gait
8
epd mpd
8
mpd groups
8
features
6
epd
5
mpd
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!