Purpose Of Review: Parkinson's disease and diabetes affect an increasing proportion of the aging global population. Both conditions extensively affect gastrointestinal (GI) motility with similar and differing clinical symptoms. Nonetheless, GI symptoms in Parkinson's disease and diabetes pose significant morbidity and impairment of quality of life. Their pathophysiology is poorly understood, and therefore, effective treatment options are lacking.
Recent Findings: Parkinson's disease patients have oropharyngeal dysphagia and constipation. They also have mild or absent upper GI symptoms associated with delayed gastric emptying, which is prevalent in 70% of patients. Delayed gastric emptying in Parkinson's disease leads to erratic medication absorption and fluctuating motor symptoms. Half of diabetics have upper GI symptoms, which correlate to gastric emptying and changes in brain activity of the insular cortex. The majority of diabetics also have constipation. Diabetics have an increased risk for developing Parkinson's disease and anti-diabetic medications are associated with risk reduction of developing Parkinson's disease. Hyperglycemia is associated with advanced glycated end products formation and acceleration of α-synuclein aggregation. GLP-1 receptor agonists have also demonstrated efficacy in improving motor symptoms and cognition in Parkinson's disease patients with diabetes. Parkinson's disease and diabetes are pan-enteric disorders with significant GI symptoms and impairment of gut motility. Both conditions have synergistic pathophysiologies that propagate neurodegenerative changes. Treatment options for GI symptoms in diabetic and Parkinson's disease patients are lacking. Anti-diabetic treatment improves motor symptoms in Parkinson's disease, however, its effect on GI symptoms is unclear.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11894-023-00868-7 | DOI Listing |
J Neuroinflammation
January 2025
Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA.
The thrombolytic protease tissue plasminogen activator (tPA) is expressed in the CNS, where it regulates diverse functions including neuronal plasticity, neuroinflammation, and blood-brain-barrier integrity. However, its role in different brain regions such as the substantia nigra (SN) is largely unexplored. In this study, we characterize tPA expression, activity, and localization in the SN using a combination of retrograde tracing and β-galactosidase tPA reporter mice.
View Article and Find Full Text PDFJ Transl Med
January 2025
School of Information and Communication Engineering, Dalian University of Technology, No. 2 Linggong Road, 116024, Dalian, China.
Background: Parkinson's Disease (PD) is a neurodegenerative disorder, and eye movement abnormalities are a significant symptom of its diagnosis. In this paper, we developed a multi-task driven by eye movement in a virtual reality (VR) environment to elicit PD-specific eye movement abnormalities. The abnormal features were subsequently modeled by using the proposed deep learning algorithm to achieve an auxiliary diagnosis of PD.
View Article and Find Full Text PDFProbiotics Antimicrob Proteins
January 2025
Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, S.A.S. Nagar, Mohali, Punjab, 160062, India.
Recent evidence links gut microbiota alterations to neurodegenerative disorders, including Parkinson's disease (PD). Replenishing the abnormal composition of gut microbiota through gut microbiota-based interventions "prebiotics, probiotics, synbiotics, postbiotics, and fecal microbiota transplantation (FMT)" has shown beneficial effects in PD. These interventions increase gut metabolites like short-chain fatty acids (SCFAs) and glucagon-like peptide-1 (GLP-1), which may protect dopaminergic neurons via the gut-brain axis.
View Article and Find Full Text PDFNat Rev Drug Discov
January 2025
Mission Therapeutics Ltd, Babraham Research Campus, Cambridge, UK.
Mitochondrial dysfunction is a hallmark of idiopathic neurodegenerative diseases, including Parkinson disease, amyotrophic lateral sclerosis, Alzheimer disease and Huntington disease. Familial forms of Parkinson disease and amyotrophic lateral sclerosis are often characterized by mutations in genes associated with mitophagy deficits. Therefore, enhancing the mitophagy pathway may represent a novel therapeutic approach to targeting an underlying pathogenic cause of neurodegenerative diseases, with the potential to deliver neuroprotection and disease modification, which is an important unmet need.
View Article and Find Full Text PDFNPJ Parkinsons Dis
January 2025
Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai, China.
Magnetic resonance imaging and circulating molecular testing are potential methods for diagnosing and treating Parkinson's disease (PD). However, their relationships remain insufficiently studied. Using genome-wide association summary statistics, we found in the general population a genetic negative correlation between white matter tract mean diffusivity and PD (-0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!