O-O Bond Formation and Oxygen Release in Photosystem II Are Enhanced by Spin-Exchange and Synergetic Coordination Interactions.

J Chem Theory Comput

State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering and Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen 361005, P. R. China.

Published: May 2023

The photosystem II (PSII)-catalyzed water oxidation is crucial for maintaining life on earth. Despite the extensive experimental and computational research that has been conducted over the past two decades, the mechanisms of O-O bond formation and oxygen release during the S ∼ S stage remain disputed. While the oxo-oxyl radical coupling mechanism in the "open-cubane" S state is widely proposed, recent studies have suggested that O-O bond formation may occur from either the high-spin water-unbound S state or the "closed-cubane" S state. To gauge the various mechanisms of O-O bond formation proposed recently, the comprehensive QM/MM and QM calculations have been performed. Our studies show that both the nucleophilic O-O coupling from the Mn site of the high-spin water-unbound S state and the O-O or O-O coupling from the "closed-cubane" S state are unfavorable kinetically and thermodynamically. Instead, the QM/MM studies clearly favor the oxyl-oxo radical coupling mechanism in the "open-cubane" S state. Furthermore, our comparative research reveals that both the O-O bond formation and O release are dictated by (a) the exchange-enhanced reactivity and (b) the synergistic coordination interactions from the Mn, Mn, and Ca sites, which partially explains why nature has evolved the oxygen-evolving complex cluster for the water oxidation.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jctc.3c00163DOI Listing

Publication Analysis

Top Keywords

o-o bond
20
bond formation
20
o-o
8
formation oxygen
8
oxygen release
8
coordination interactions
8
water oxidation
8
mechanisms o-o
8
radical coupling
8
coupling mechanism
8

Similar Publications

Synthesis of amino acids in intense laser-irradiated primary amine solutions.

Phys Chem Chem Phys

January 2025

Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai, 980-8577, Japan.

Mechanical interatomic bond formation under ultrahigh pressure induced by laser-driven shock waves has been demonstrated for C-C, C-O, and O-O bonds. In this study, molecules generated in primary amine solutions irradiated with high-intensity lasers were identified. When methylamine or ethylamine was dissolved in methanol or ethanol, molecules likely formed through C-C or O-N bonds between the amine and alcohol were detected.

View Article and Find Full Text PDF

Iron-doped nickel oxyhydroxides, Ni(Fe)OH, are among the most promising oxygen evolution reaction (OER) electrocatalysts in alkaline environments. Although iron (Fe) significantly enhances the catalytic activity, there is still no clear consensus on whether Fe directly participates in the reaction or merely acts as a promoter. To elucidate the Fe's role, we performed X-ray spectroscopy studies supported by DFT on Ni(Fe)OH electrocatalysts.

View Article and Find Full Text PDF

Nearly Barrierless Four-Hole Water Oxidation Catalysis on Semiconductor Photoanodes with High Density of Accumulated Surface Holes.

J Am Chem Soc

January 2025

Key Laboratory of Photochemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.

The sluggish water oxidation reaction (WOR) is considered the kinetic bottleneck of artificial photosynthesis due to the complicated four-electron and four-proton transfer process. Herein, we find that the WOR can be kinetically nearly barrierless on four representative photoanodes (i.e.

View Article and Find Full Text PDF

In this study, we apply TD-DFT and DFT calculations to explore the mechanistic details of O evolution in an artificial system that closely resembles Photosystem II (PSII). The reaction involves mononuclear Mn(III) complex [Mn(salpd)(OH)] and -benzoquinone under light-driven conditions. Our calculations reveal that the Schiff-base ligand salpd plays a crucial role in several key steps of the reaction, including the light-mediated oxidation of [Mn(salpd)(OH)] to [Mn(salpd)(OH)] by -benzoquinone, the subsequent oxidation of [Mn(salpd)(OH)] to the key Mn(V) intermediate [Mn(salpd)(O)], and the critical O-O bond formation step.

View Article and Find Full Text PDF

Modulating the electronic structure of noble metals via electronic metal-support interaction (EMSI) has been proven effectively for facilitating molecular oxygen activation and catalytic oxidation reactions. Nevertheless, the investigation of the fundamental mechanisms underlying activity enhancement has primarily focused on metal oxides as supports, especially in the catalytic degradation of volatile organic compounds. In this study, a novel Pt catalyst supported on nitrogen-doped carbon encapsulating FeNi alloy, featuring ultrafine Pt nanoparticles, was synthesized.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!