Enhanced Sampling for Free Energy Profiles with Post-Transition-State Bifurcations.

J Chem Theory Comput

Department of Chemistry, Seoul National University, Seoul 08826, South Korea.

Published: May 2023

We present a strategy to explore the free energy landscapes of chemical reactions with post-transition-state bifurcations using an enhanced sampling method based on well-tempered metadynamics. Obviating the need for computationally expensive density functional theory-level ab initio molecular dynamics simulations, we obtain accurate energetics by utilizing a free energy perturbation scheme and deep learning estimator for the single-point energies of substrate configurations. Using a pair of easily interpretable collective variables, we present a quantitative free energy surface that is compatible with harmonic transition state theory calculations and in which the bifurcations are clearly visible. We demonstrate our approach with the example of the SpnF-catalyzed Diels-Alder reaction, a cycloaddition reaction in which post-transition-state bifurcation leads to the [4+2] as well as the [6+4] cycloadduct. We obtain the free energy landscapes for different stereochemical reaction pathways and characterize the mechanistic continuum between relevant reaction channels without explicitly searching for the pertinent transition state structures.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jctc.2c01271DOI Listing

Publication Analysis

Top Keywords

free energy
20
enhanced sampling
8
post-transition-state bifurcations
8
energy landscapes
8
transition state
8
free
5
energy
5
sampling free
4
energy profiles
4
profiles post-transition-state
4

Similar Publications

Background: Recent technological advances have introduced novel methods for measuring body composition, each with unique benefits and limitations. The choice of method often depends on the trade-offs between accuracy, cost, participant burden, and the ability to measure specific body composition compartments.

Objective: To review the considerations of cost, accuracy, portability, and participant burden in reference and emerging body composition assessment methods, and to evaluate their clinical applicability.

View Article and Find Full Text PDF

This research utilizes density functional theory to investigate the ground and excited-state properties of a new series of organic dyes with D-π-A configurations (D1-D6) for their potential application in dye-sensitized solar cells. The study focuses on modifying these dyes using various functional groups as π-bridges to optimize their electronic properties and improve their efficiency as sensitizers in DSSCs. The frontier molecular orbitals (HOMO and LUMO) were analysed to evaluate electron transfer properties.

View Article and Find Full Text PDF

Radical covalent organic frameworks (RCOFs) have demonstrated significant potential in redox catalysis and energy conversion applications. However, the synthesis of stable RCOFs with well-defined neutral carbon radical centers is challenging due to the inherent radical instability, limited synthetic methods and characterization difficulties. Building upon the understanding of stable carbon radicals and structural modulations for preparing crystalline COFs, herein we report the synthesis of a crystalline carbon-centered RCOF through a facile post-oxidation process.

View Article and Find Full Text PDF

Background: Growth differentiation factor (GDF)-15 is a pleiotropic cytokine that is associated with appetite-suppressing effects and weight loss in patients with malignancy.

Objectives: This study aims to investigate the relationships between GDF-15 levels, anorexia, cachexia, and clinical outcomes in patients with advanced heart failure with reduced ejection fraction (HFrEF).

Methods: In this observational, retrospective analysis, a total of 344 patients with advanced HFrEF (age 58 ± 10 years, 85% male, 67% NYHA functional class III), underwent clinical and echocardiographic examination, body composition evaluation by skinfolds and dual-energy x-ray absorptiometry, circulating metabolite assessment, Minnesota Living with Heart Failure Questionnaire, and right heart catheterization.

View Article and Find Full Text PDF

Catalyst-Free Nitrogen Fixation by Microdroplets through a Radical-Mediated Disproportionation Mechanism under Ambient Conditions.

J Am Chem Soc

January 2025

State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen 361005, China.

Nitrogen fixation is essential for the sustainable development of both human society and the environment. Due to the chemical inertness of the N≡N bond, the traditional Haber-Bosch process operates under extreme conditions, making nitrogen fixation under ambient conditions highly desirable but challenging. In this study, we present an ultrasonic atomizing microdroplet method that achieves nitrogen fixation using water and air under ambient conditions in a rationally designed sealed device, without the need for any catalyst.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!