Breaking a correlated pair in a superconductor requires an even number of fermions providing at least twice the pairing energy Δ. Here, we show that a single tunneling electron can also excite a pair breaking excitation in a proximitized gold film in the presence of magnetic impurities. Combining scanning tunneling spectroscopy with theoretical modeling, we map the excitation spectrum of an Fe-porphyrin molecule on the Au/V(100) proximitized surface into a manifold of entangled Yu-Shiba-Rusinov and spin excitations. Pair excitations emerge in the tunneling spectra as peaks outside the spectral gap only in the strong coupling regime, where the presence of a bound quasiparticle in the ground state ensures the even fermion parity of the excitation. Our results unravel the quantum nature of magnetic impurities on superconductors and demonstrate that pair excitations unequivocally reveal the parity of the ground state.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.130.136004DOI Listing

Publication Analysis

Top Keywords

proximitized gold
8
gold film
8
magnetic impurities
8
pair excitations
8
ground state
8
cooper pair
4
excitation
4
pair excitation
4
excitation mediated
4
mediated molecular
4

Similar Publications

Breaking a correlated pair in a superconductor requires an even number of fermions providing at least twice the pairing energy Δ. Here, we show that a single tunneling electron can also excite a pair breaking excitation in a proximitized gold film in the presence of magnetic impurities. Combining scanning tunneling spectroscopy with theoretical modeling, we map the excitation spectrum of an Fe-porphyrin molecule on the Au/V(100) proximitized surface into a manifold of entangled Yu-Shiba-Rusinov and spin excitations.

View Article and Find Full Text PDF

Molecular spins on surfaces potentially used in quantum information processing and data storage require long spin excitation lifetimes. Normally, coupling of the molecular spin with the conduction electrons of metallic surfaces causes fast relaxation of spin excitations. However, the presence of superconducting effects in the substrate can protect the excited spin from decaying.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!