Subdural Soft Electrocorticography (ECoG) Array Implantation and Long-Term Cortical Recording in Minipigs.

J Vis Exp

Laboratory for Soft Bioelectronic Interfaces, Neuro-X Institute, Ecole Polytechnique Fédérale de Lausanne;

Published: March 2023

Neurological impairments and diseases can be diagnosed or treated using electrocorticography (ECoG) arrays. In drug-resistant epilepsy, these help delineate the epileptic region to resect. In long-term applications such as brain-computer interfaces, these epicortical electrodes are used to record the movement intention of the brain, to control the robotic limbs of paralyzed patients. However, current stiff electrode grids do not answer the need for high-resolution brain recordings and long-term biointegration. Recently, conformable electrode arrays have been proposed to achieve long-term implant stability with high performance. However, preclinical studies for these new implant technologies are needed to validate their long-term functionality and safety profile for their translation to human patients. In this context, porcine models are routinely employed in developing medical devices due to their large organ sizes and easy animal handling. However, only a few brain applications are described in the literature, mostly due to surgery limitations and integration of the implant system on a living animal. Here, we report the method for long-term implantation (6 months) and evaluation of soft ECoG arrays in the minipig model. The study first presents the implant system, consisting of a soft microfabricated electrode array integrated with a magnetic resonance imaging (MRI)-compatible polymeric transdermal port that houses instrumentation connectors for electrophysiology recordings. Then, the study describes the surgical procedure, from subdural implantation to animal recovery. We focus on the auditory cortex as an example target area where evoked potentials are induced by acoustic stimulation. We finally describe a data acquisition sequence that includes MRI of the whole brain, implant electrochemical characterization, intraoperative and freely moving electrophysiology, and immunohistochemistry staining of the extracted brains. This model can be used to investigate the safety and function of novel design of cortical prostheses; mandatory preclinical study to envision translation to human patients.

Download full-text PDF

Source
http://dx.doi.org/10.3791/64997DOI Listing

Publication Analysis

Top Keywords

electrocorticography ecog
8
ecog arrays
8
translation human
8
human patients
8
implant system
8
long-term
6
implant
5
subdural soft
4
soft electrocorticography
4
ecog array
4

Similar Publications

Animacy perception, the ability to discern living from non-living entities, is crucial for survival and social interaction, as it includes recognizing abstract concepts such as movement, purpose, and intentions. This process involves interpreting cues that may suggest the intentions or actions of others. It engages the temporal cortex (TC), particularly the superior temporal sulcus (STS) and the adjacent region of the inferior temporal cortex (ITC), as well as the dorsomedial prefrontal cortex (dmPFC).

View Article and Find Full Text PDF

Gait initiation is a fundamental human task, requiring one or more anticipatory postural adjustments (APA) prior to stepping. Deviations in amplitude and timing of APAs exist in Parkinson's disease (PD), causing dysfunctional postural control which increases the risk of falls. The motor cortex and basal ganglia have been implicated in the regulation of postural control, however, their dynamics during gait initiation, relationship to APA metrics, and response to pharmacotherapy such as levodopa are unknown.

View Article and Find Full Text PDF

Interictal epileptiform discharges (IEDs) such as spikes and sharp waves represent pathological electrophysiological activities occurring in epilepsy patients between seizures. IEDs occur preferentially during non-rapid eye movement (NREM) sleep and are associated with impaired memory and cognition. Despite growing interest, most studies involving IED detections rely on visual annotations or employ simple amplitude threshold approaches.

View Article and Find Full Text PDF

Pigs as a translational animal model for the study of peak alpha frequency.

Neuroscience

December 2024

Center for Neuroplasticity and Pain (CNAP), Department of Health Science and Technology, Aalborg University, Aalborg, Denmark.

The most characteristic feature of the human electroencephalogram is the peak alpha frequency (PAF). While PAF has been proposed as a biomarker in several diseases and disorders, the disease mechanisms modulating PAF, as well as its physiological substrates, remain elusive. This has partly been due to challenges related to experimental manipulation and invasive procedures in human neuroscience, as well as the scarcity of animal models where PAF is consistently present in resting-state.

View Article and Find Full Text PDF

This study investigates the effects of occipital lobe tumors on visual processing and the role of brain-computer interface (BCI) technologies in post-surgical visual rehabilitation. Through a combination of pre-surgical functional magnetic resonance imaging (fMRI) and Diffusion Tensor Imaging (DTI), intra-operative direct cortical stimulation (DCS) and Electrocorticography (ECoG), and post-surgical BCI interventions, we provide insight into the complex dynamics between occipital lobe tumors and visual function. Our results highlight a discrepancy between clinical assessments of visual field damage and the patient's reported visual experiences, suggesting a residual functional capacity within the damaged occipital regions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!