Nucleation and growth of minerals has broad implications in the geological, environmental and materials sciences. Recent developments in fast X-ray nanotomography have enabled imaging of crystal growth in solutions in situ with a resolution of tens of nanometres, far surpassing optical microscopy. Here, a low-cost, custom-designed aqueous flow cell dedicated to the study of heterogeneous nucleation and growth of minerals in aqueous environments is shown. To gauge the effects of radiation damage from the imaging process on growth reactions, radiation-induced morphological changes of barite crystals (hundreds of nanometres to ∼1 µm) that were pre-deposited on the wall of the flow cell were investigated. Under flowing solution, minor to major crystal dissolution was observed when the tomography scan frequency was increased from every 30 min to every 5 min (with a 1 min scan duration). The production of reactive radicals from X-ray induced water radiolysis and decrease of pH close to the surface of barite are likely responsible for the observed dissolution. The flow cell shown here can possibly be adopted to study a wide range of other chemical reactions in solutions beyond crystal nucleation and growth where the combination of fast flow and fast scan can be used to mitigate the radiation effects.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10161885PMC
http://dx.doi.org/10.1107/S1600577523002783DOI Listing

Publication Analysis

Top Keywords

flow cell
16
nucleation growth
12
aqueous flow
8
crystal growth
8
x-ray nanotomography
8
growth minerals
8
growth
6
flow
5
assessing aqueous
4
cell
4

Similar Publications

Background: Remote ischemic conditioning (RIC) is a simple and low-cost intervention that is thought to increase collateral blood flow through the vasodilatory effects of nitric oxide (NO) produced by the endothelium and red blood cells (RBCs). This study aims to investigate whether RIC affects RBC deformability and levels of NO and nitrite in patients with ischemic stroke.

Methods: This is a predefined substudy to the RESIST (Remote Ischemic Conditioning in Patients With Acute Stroke Trial) randomized clinical trial conducted in Denmark.

View Article and Find Full Text PDF

A targeted and synergetic nano-delivery system against infection for promoting wound healing.

Mater Today Bio

April 2025

Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan Province, China.

Purpose: infection is the most common pathogen in burn wound infections, causing delayed wound healing and progression to chronic wounds. Therefore, there is an urgent need to develop antimicrobial agents that can promote wound healing for effectively treating infected wounds.

Patients And Methods: Using magnetic stirring and ultrasound to synthesize Apt-pM@UCNPmSiO-Cur-CAZ.

View Article and Find Full Text PDF

Background: Patients with chronic hepatitis B virus (HBV) infection are characterized by impaired immune response that fails to eliminate HBV. Immune checkpoint molecules (ICMs) control the amplitude of the activation and function of immune cells, which makes them the key regulators of immune response.

Methods: We performed a multiparametric flow cytometry analysis of ICMs and determined their expression on intrahepatic lymphocyte subsets in untreated and treated patients with HBV in comparison with non-pathological liver tissue.

View Article and Find Full Text PDF

Hairy cell leukemia (HCL) is a rare and slow-progressing lymphoid disorder commonly presenting with splenomegaly and cytopenias. The diagnosis can be challenging due to its nonspecific clinical presentation, frequently resembling other diseases. We report the case of a 48-year-old male patient, whose initial diagnostic hypotheses included cutaneous tuberculosis and reactive arthritis, but the diagnosis was confirmed as HCL after further investigation, including flow cytometry.

View Article and Find Full Text PDF

FPRL2 has been shown to be associated with a variety of tumours but has not been well studied in breast cancer. In this study, We combine molecular biology techniques with bioinformatics to analyze the role of FPRL2 in breast cancer and adriamycin resistance. By utilizing bioinformatics, we mine TCGA and GEO public databases to assess FPRL2 expression in breast cancer patients and its correlation with patient prognosis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!