AI Article Synopsis

  • Hesperetin (HES) is a natural compound that may help protect the gut during severe infections like sepsis by reducing inflammation and preventing damage.
  • A study on mice showed that HES treatment can stop harmful nets formed by immune cells and help keep the gut barrier strong when the mice are exposed to a bacterial product called LPS.
  • Results revealed that HES not only lowered inflammation and organ damage but also improved gut health by stopping the creation of harmful substances and cell damage during sepsis.

Article Abstract

: Hesperetin (HES), one of the major flavonoids that has various biological activities, such as anti-inflammatory and antioxidant activities, may preserve the intestinal barrier during sepsis. However, the detailed mechanism remains unclear. Our previous studies confirmed that neutrophil extracellular traps (NETs) may jeopardize the intestinal barrier a reactive oxygen species (ROS)-dependent pathway during sepsis. Therefore, we hypothesized that HES may inhibit NET formation and protect the intestinal barrier function during sepsis. : Mice were pretreated with HES (50 mg kg) intraperitoneally for one week, and sepsis models were then induced using lipopolysaccharides (LPS) (10 mg kg). The mice were randomly divided into three groups: (1) sham group; (2) LPS group; and (3) HES + LPS group. Twenty-four hours after LPS injection, the serum and terminal ileum specimens were collected for subsequent studies. To detect ROS production and NET formation , human neutrophils were collected and incubated with phorbol-12-myristate-13-acetate (PMA) and various concentrations of HES. The level of autophagy was measured by an immunofluorescence assay and western blot analysis. TUNEL staining was utilized to analyze cell apoptosis. : The outcomes demonstrated that HES decreased inflammatory cytokine and myeloperoxidase (MPO) levels in serum and attenuated distant organ dysfunction in LPS-induced septic mice. Meanwhile, HES treatment reversed intestinal histopathological damage in septic mice, improving intestinal permeability and enhancing tight junction expression. Moreover, we found that neutrophil infiltration and NET formation in the intestine were suppressed during sepsis after HES pretreatment. , HES treatment reduced PMA-induced ROS production and NET formation, which were reversed by hydrogen peroxide (HO) administration. Notably, HES also inhibited NET formation by reducing the microtubule-associated protein light chain 3 (LC3)-II/LC3-I ratio (an indicator of autophagy) in PMA-induced neutrophils, which was reversed by rapamycin. Moreover, when autophagy was suppressed by chloroquine or induced by rapamycin, apoptosis in cells will be switched with autophagy. : Taken together, these findings suggest that HES may inhibit NET formation in a ROS/autophagy-dependent manner and switch neutrophil death from NETosis to apoptosis, which reduced NETs-related intestinal barrier damage, providing a novel protective role in intestinal barrier dysfunction during sepsis.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d2fo02707kDOI Listing

Publication Analysis

Top Keywords

intestinal barrier
24
net formation
24
intestinal
8
neutrophil extracellular
8
inhibit net
8
group lps
8
lps group
8
ros production
8
production net
8
septic mice
8

Similar Publications

Effects of moderate beer consumption on immunity and the gut microbiome in immunosuppressed mice.

Biosci Microbiota Food Health

August 2024

Department of Microecology, College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, PR China.

Beer contains a variety of bioactive ingredients and trace elements that can regulate bodily functions, and moderate consumption of beer can enhance immune responses. This study aimed to investigate the potential benefits of moderate consumption of alcoholic or non-alcoholic beer on the gut microbiome, immunity, and intestinal barrier function in immunosuppressed BALB/c mice induced by cyclophosphamide (CTX). Model mice with CTX-induced immunosuppression were administered alcoholic or non-alcoholic beer or galacto-oligosaccharides (GOS) for 28 consecutive days.

View Article and Find Full Text PDF

Postmenopausal osteoporosis is a chronic inflammatory disease characterized by decreased bone mass and increased bone fracture risk. Estrogen deficiency during menopause plays a major role in post-menopausal osteoporosis by influencing bone, immune, and gut cell activity. In the gut, estrogen loss decreases tight junction proteins that bind epithelial cells of the intestinal barrier together.

View Article and Find Full Text PDF

The primary intent of this manuscript is to ascertain the effect of cucurbitacin IIa on ulcerative colitis (UC) and illustrate the potential mechanisms based on intestinal barrier function and the PERK/ATF4/CHOP signaling pathway. The UC mouse model was constructed by drinking 3% dextran sulfate sodium (DSS) for 1 week. The colonic tissues were stained with HE to assess pathological changes.

View Article and Find Full Text PDF

Traditional colitis treatment strategies have issues such as side effects and poor lesion targeting. In this study, a milled black rice particle-stabilized Pickering emulsion (BR-5-DMN) has been developed as a delivery vehicle for 5-demethylnobiletin (5-DMN) to treat colitis. The alleviating effects of three 5-DMN delivery systems: BR-5-DMN, Tween 80 emulsion for upper gastrointestinal delivery, and soybean oil with most 5-DMN entering the colon were compared.

View Article and Find Full Text PDF

Ulcerative colitis (UC) treatment is often limited by adverse reactions and high recurrence rates, highlighting the need for safer, more effective therapies. Citrus medica 'Fingered' (C. medica), known for its anti-inflammatory properties, remains underexplored, particularly its polysaccharide components.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!