The score and prognostic value of necroptosis were analyzed in the TCGA and GSE120622 datasets. Necroptosis has the highest correlation with the immune microenvironment, and the high score in NSCLC correlates with poor prognosis. Differentially expressed genes between non-small cell lung cancer (NSCLC) and controls in both datasets were identified and subjected to construct co-expression networks, respectively. Black and blue modules were selected because of high correction with necroptosis. The intersected two module genes were mainly involved in immune and inflammatory response, cell cycle process and DNA replication. Nine marker genes of necroptosis were identified in these modules and considered as candidate genes. Based on candidate genes, we identified two clusters utilizing concordance clustering, additionally dividing NSCLC samples into high- and low-risk groups. There were significant differences in overall survival between two clusters and between high- and low-risk groups. Furthermore, PARP1 was found among the candidate genes to be the target gene of dexmedetomidine acting on necroptosis. Molecular experimental results found that PARP1 was highly expressed in the dexmedetomidine treated NSCLC compared with the NSCLC. Candidate genes associated with necroptosis may provide a powerful prognostic tool for precision oncology. Dexmedetomidine may target PARP1 to promote necroptosis and then affect NSCLC.

Download full-text PDF

Source
http://dx.doi.org/10.1080/02648725.2023.2193469DOI Listing

Publication Analysis

Top Keywords

candidate genes
16
necroptosis
8
non-small cell
8
cell lung
8
lung cancer
8
high- low-risk
8
low-risk groups
8
genes
7
nsclc
6
dexmedetomidine
4

Similar Publications

Background: Liver fibrosis is a serious global health issue, but current treatment options are limited due to a lack of approved therapies capable of preventing or reversing established fibrosis.

Aim: This study investigated the antifibrotic effects of a synthetic peptide derived from α-lactalbumin in a mouse model of thioacetamide (TAA)-induced liver fibrosis.

Methods: analyses were conducted to assess the physicochemical properties, pharmacophore features, and docking interactions of the peptide.

View Article and Find Full Text PDF

Purpose: Necrotizing fasciitis (NF) is a scarce but potentially life-threatening infection. However, no research has reported the cellular heterogeneity in patients with NF. We aim to investigate the change of cells from deep fascia in response to NF by single-cell RNA-seq.

View Article and Find Full Text PDF

Van der Woude syndrome (VWS) is an autosomal dominant disorder characterized by lower lip pits and orofacial clefts (OFCs). With a prevalence of approximately 1 in 35,000 live births, it is the most common form of syndromic clefting and may account for ~2% of all OFCs. The majority of VWS is attributed to genetic variants in IRF6 (~70%) or GRHL3 (~5%), leaving up to 25% of individuals with VWS without a molecular diagnosis.

View Article and Find Full Text PDF

DNA methylation is a stable epigenetic mark that plays a crucial role in plant life processes. However, the specific functions of DNA methylation in grape berry development remain largely unknown. In this study, we performed whole-genome bisulfite sequencing on 'Kyoho' grape and its early-ripening bud mutant 'Fengzao' at different developmental stages.

View Article and Find Full Text PDF

Background: Mesenchymal stem cells (MSCs) are promising candidates for regenerative therapy due to their self-renewal capability, multilineage differentiation potential, and immunomodulatory effects. The molecular characteristics of MSCs are influenced by their location. Recently, epidural fat (EF) and EF-derived MSCs (EF-MSCs) have garnered attention due to their potential benefits to the spinal microenvironment and their high expression of neural SC markers.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!