The polar discontinuity at any ferroelectric surface creates a depolarizing field that must be screened for the polarization to be stable. In capacitors, screening is done by the electrodes, while in bare ferroelectric surfaces it is typically accomplished by atmospheric adsorbates. Although chemisorbed species can have even better screening efficiency than conventional electrodes, they are subject to unpredictable environmental fluctuations and, moreover, dominant charged species favor one polarity over the opposite. This paper proposes a new screening concept, namely surface functionalization with resonance-hybrid molecules, which combines the predictability and bipolarity of conventional electrodes with the screening efficiency of adsorbates. Thin films of barium titanate (BaTiO ) coated with resonant para-aminobenzoic acid (pABA) display increased coercivity for both signs of ferroelectric polarization irrespective of the molecular layer thickness, thanks to the ability of these molecules to swap between different electronic configurations and adapt their surface charge density to the screening needs of the ferroelectric underneath. Because electron delocalization is only in the vertical direction, unlike conventional metals, chemical electrodes allow writing localized domains of different polarity underneath the same electrode. In addition, hybrid capacitors composed of graphene/pABA/ferroelectric have been made with enhanced coercivity compared to pure graphene-electode capacitors.

Download full-text PDF

Source
http://dx.doi.org/10.1002/smll.202207799DOI Listing

Publication Analysis

Top Keywords

screening efficiency
8
conventional electrodes
8
screening
6
electrodes
5
tunable molecular
4
molecular electrodes
4
electrodes bistable
4
bistable polarization
4
polarization screening
4
screening polar
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!