Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Research on new strategies to regulate glucose homeostasis to prevent or manage type 2 diabetes is a critical challenge. Several studies have shown that protein-rich diets could improve glucose homeostasis. Whey protein hydrolysis allows the release of amino acids and bioactive peptides, which exert numerous well-documented bioactivities. This study evaluates and compares the hypoglycemic potential of a whey protein hydrolysate and a whey protein isolate after static simulated gastrointestinal digestion (SGID) using the INFOGEST protocol. The peptide molecular mass distributions of the digested samples were evaluated by size exclusion chromatography and show that after digestion, the whey hydrolysate is significantly more hydrolyzed. After SGID, the whey protein hydrolysate induces a significative greater secretion of GLP-1 after two hours of contact with the enteroendocrine STC-1 cell line than the whey protein after isolation. In addition, the digested whey hydrolysate increases preproglucagon (GCG) and pro-convertase-1 (PCSK1) expression. The digested hydrolysate also inhibits the DPP-IV activity after an intestinal barrier passage challenge using a Caco-2/HT29-MTX mixed-cell model. Our results highlight that the prehydrolysis of whey proteins modify the intestinal peptidome, leading to a potentially greater hypoglycemic effect. This study confirms the previously observed hypoglycemic effect of this hydrolysate and evidences the beneficial impact of the industrial hydrolysis process.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d3fo00467h | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!