The host-microbiota relationship has evolved to shape mammalian processes, including immunity, metabolism, and development . Host phenotypes change in direct response to microbial exposures by the individual. Here we show that the microbiota induces phenotypic change not only in the individual but also in their succeeding generations of progeny. We found that germ-free mice exhibit a robust sebum secretion defect and transcriptional changes in various organs, persisting across multiple generations despite microbial colonization and breeding with conventional mice. Host-microbe interactions could be involved in this process, since T cell-deficient mice, which display defective sebum secretion , also transgenerationally transmit their phenotype to progeny. These phenotypes are inherited by progeny conceived during fertilization using germ-free sperm and eggs, demonstrating that epigenetic information in the gametes is required for phenotypic transmission. Accordingly, small non-coding RNAs that can regulate embryonic gene expression were strikingly and similarly altered in gametes of germ-free and T cell-deficient mice. Thus, we have uncovered a novel mechanism whereby the microbiota and immune system induce phenotypic changes in successive generations of offspring. This epigenetic form of inheritance could be advantageous for host adaptation to environmental perturbation, where phenotypic diversity can be introduced more rapidly than by genetic mutation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10104111PMC
http://dx.doi.org/10.1101/2023.04.06.535940DOI Listing

Publication Analysis

Top Keywords

microbiota immune
8
immune system
8
sebum secretion
8
cell-deficient mice
8
system non-genetically
4
non-genetically affect
4
affect offspring
4
offspring phenotypes
4
phenotypes transgenerationally
4
transgenerationally host-microbiota
4

Similar Publications

Role of nutrition in diabetes mellitus and infections.

World J Clin Cases

January 2025

Naval Medical Center of PLA, Naval Medical University, Shanghai 200052, China.

In this editorial, we have commented on the article that has been published in the recent issue of . The authors have described a case of unilateral thyroid cyst and have opined that the acute onset of infection may be linked to diabetes mellitus (DM). We have focused on the role of nutrition in the association between DM and infection.

View Article and Find Full Text PDF

Background: The management of acute myeloid leukemia (AML) is hindered by treatment-related toxicities and complications, particularly cytopenia, which remains a leading cause of mortality. Given the pivotal role of the gut microbiota (GM) in hemopoiesis and immune regulation, we investigated its impact on hematologic recovery during AML induction therapy.

Methods: We profiled the GM of 27 newly diagnosed adult AML patients using 16S rRNA amplicon sequencing and correlated it with key clinical parameters before and after induction therapy.

View Article and Find Full Text PDF

Metabolic syndrome is, in humans, associated with alterations in the composition and localization of the intestinal microbiota, including encroachment of bacteria within the colon's inner mucus layer. Possible promoters of these events include dietary emulsifiers, such as carboxymethylcellulose (CMC) and polysorbate-80 (P80), which, in mice, result in altered microbiota composition, encroachment, low-grade inflammation and metabolic syndrome. While assessments of gut microbiota composition have largely focused on fecal/luminal samples, we hypothesize an outsized role for changes in mucus microbiota in driving low-grade inflammation and its consequences.

View Article and Find Full Text PDF

Post-Traumatic Stress Disorder (PTSD) is a debilitating condition caused by exposure to traumatic events, affecting 5-10% of the population, with increased prevalence among women and individuals in war zones. Beyond psychological symptoms, PTSD induces significant physiological changes across systems. Psychoneuroimmunoendocrinology (PNIE) offers a framework to explore these complex interactions between the psyche and the nervous, immune, and endocrine systems.

View Article and Find Full Text PDF

Early-Life Antibiotic Exposures: Paving the Pathway for Dysbiosis-Induced Disorders.

Eur J Pharmacol

January 2025

School of Pharmaceutical Sciences, Universiti Sains Malaysia, Gelugor, 11800, Penang, Malaysia. Electronic address:

Microbiota encompasses a diverse array of microorganisms inhabiting specific ecological niches. Gut microbiota significantly influences physiological processes, including gastrointestinal motor function, neuroendocrine signalling, and immune regulation. They play a crucial role in modulating the central nervous system and bolstering body defence mechanisms by influencing the proliferation and differentiation of innate and adaptive immune cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!