Purpose: Magnetic particle imaging (MPI) is being explored in biological contexts that require accurate and reproducible quantification of superparamagnetic iron oxide nanoparticles (SPIONs). While many groups have focused on improving imager and SPION design to improve resolution and sensitivity, few have focused on improving quantification and reproducibility of MPI. The aim of this study was to compare MPI quantification results by two different systems and the accuracy of SPION quantification performed by multiple users at two institutions.
Procedures: Six users (3 from each institute) imaged a known amount of Vivotrax+ (10 μg Fe), diluted in a small (10 μL) or large (500 μL) volume. These samples were imaged with or without calibration standards in the field of view, to create a total of 72 images (6 users x triplicate samples x 2 sample volumes x 2 calibration methods). These images were analyzed by the respective user with two region of interest (ROI) selection methods. Image intensities, Vivotrax+ quantification, and ROI selection was compared across users, within and across institutions.
Results: MPI imagers at two different institutes produce significantly different signal intensities, that differ by over 3 times for the same concentration of Vivotrax+. Overall quantification yielded measurements that were within ± 20% from ground truth, however SPION quantification values obtained at each laboratory were significantly different. Results suggest that the use of different imagers had a stronger influence on SPION quantification compared to differences arising from user error. Lastly, calibration conducted from samples in the imaging field of view gave the same quantification results as separately imaged samples.
Conclusions: This study highlights that there are many factors that contribute to the accuracy and reproducibility of MPI quantification, including variation between MPI imagers and users, despite pre-defined experimental set up, image acquisition parameters, and ROI selection analysis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10104026 | PMC |
http://dx.doi.org/10.1101/2023.04.03.535446 | DOI Listing |
Placenta
January 2025
Department of Radiology, Baylor College of Medicine, Houston, TX, 77030, USA; The Singleton Department of Radiology, Texas Children's Hospital, Houston, TX, 77030, USA. Electronic address:
Introduction: Placenta accreta spectrum (PAS) occurs when the placenta is pathologically adherent to the myometrium. An intact retroplacental clear space (RPCS) is a marker of normal placentation. In this study, we investigate use of the FDA-approved iron supplement ferumoxytol for contrast-enhanced MRI of the RPCS in mouse models of normal pregnancy and PAS.
View Article and Find Full Text PDFNeuroimage
December 2024
Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea. Electronic address:
Magnetic resonance imaging (MRI) excels at detecting quantitative changes in microvascular parameters such as cerebral blood volume, cerebral blood flow, and vessel size index (VSI), which are essential for diagnosing and monitoring cerebrovascular diseases. Absolute VSI estimation, often utilizing superparamagnetic iron oxide nanoparticles as contrast agents, relies on measuring transverse relaxation rates (∆R and ∆R). This study systematically investigates the spatial resolution dependence of VSI using Monte Carlo simulations and in vivo rat brain MRI experiments.
View Article and Find Full Text PDFMol Imaging Biol
December 2024
Department of Pediatrics Research, University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, USA.
Purpose: Clinical adoption of NK cell immunotherapy is underway for medulloblastoma and osteosarcoma, however there is currently little feedback on cell fate after administration. We propose magnetic particle imaging (MPI) may have applications for the quantitative detection of NK cells.
Procedures: Human-derived NK-92 cells were labeled by co-incubation with iron oxide nanoparticles (VivoTrax™) for 24 h then excess nanoparticles were washed with centrifugation.
Tomography
November 2024
Department of Medical Biophysics, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 3K7, Canada.
Background: Preclinical cell tracking is enhanced with a multimodal imaging approach. Bioluminescence imaging (BLI) is a highly sensitive optical modality that relies on engineering cells to constitutively express a luciferase gene. Magnetic particle imaging (MPI) is a newer imaging modality that directly detects superparamagnetic iron oxide (SPIO) particles used to label cells.
View Article and Find Full Text PDFNat Mater
January 2025
State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, China.
Nitric oxide (NO), a pivotal signalling molecule, plays multifaceted roles in physiological and pathological processes, including cardiovascular and immune functions, neurotransmission and cancer progression. Nevertheless, measuring NO in vivo is challenging due to its transient nature and the complexity of the biological environment. Here we describe NO-responsive magnetic probes made of crosslinked superparamagnetic iron oxide nanoparticles tethered to a NO-sensitive cleavable linker for highly sensitive and selective NO magnetic resonance imaging in vivo.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!