Three-dimensional (3D) bioprinter including screw extruder was developed, and the polycaprolactone (PCL) grafts fabricated by screw-type and pneumatic pressure-type bioprinters were comparatively evaluated. The density and tensile strength of the single layers printed by the screw-type were 14.07% and 34.76% higher, respectively, than those of the single layers produced by the pneumatic pressure-type. The adhesive force, tensile strength, and bending strength of the PCL grafts printed by the screw-type bioprinter were 2.72 times, 29.89%, and 67.76% higher, respectively, than those of the PCL grafts prepared by the pneumatic pressure-type bioprinter. By evaluating the consistency with the original image of the PCL grafts, we found that it had a value of about 98.35%. The layer width of the printing structure was 485.2 ± 0.004919 μm, which was 99.5% to 101.8% compared to the set value (500 μm), indicating high accuracy and uniformity. The printed graft had no cytotoxicity, and there were no impurities in the extract test. In the in vivo studies, the tensile strength of the sample 12 months after implantation was reduced by 50.37% and 85.43% compared to the initial point of the sample printed by the screw-type and the pneumatic pressure-type, respectively. Through observing the fractures of the samples at 9- and 12-month samples, we found that the PCL grafts prepared by the screw-type had better in vivo stability. Therefore, the printing system developed in this study can be used as a treatment for regenerative medicine.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10090531 | PMC |
http://dx.doi.org/10.18063/ijb.v9i2.652 | DOI Listing |
Biofabrication
January 2025
Biomedical Engineering Department, Technion Israel Institute of Technology, Technion City, Haifa 32000, Haifa, Haifa, 3200003, ISRAEL.
Best cosmetic outcomes of breast reconstruction using tissue engineering techniques rely on the scaffold architecture and material, which are currently both to be determined. This study suggests an approach for a rational design of breast-shaped scaffold architecture, in which structural analysis is implemented to predict its stiffness and adjust it to that of the native tissue. This approach can help achieve the goal of optimal scaffold architecture for breast tissue engineering.
View Article and Find Full Text PDFSICOT J
January 2025
Ngudi Waluyo General Hospital, Blitar 65142, East Java, Indonesia.
Introduction: Knee joint stability is influenced by force distribution and ligament structures. High Tibial Osteotomy (HTO) treats knee deformities and redistributes load, reducing further invasive procedures. High Tibial Osteotomy (HTO) is a well-established procedure for addressing knee instability, particularly in cases involving ligament deficiencies such as ACL and PCL insufficiencies.
View Article and Find Full Text PDFFront Bioeng Biotechnol
January 2025
Division of Surgery and Interventional Science, University College London, Royal Free Hospital Campus, London, United Kingdom.
Purpose: The study conducts a comparative analysis between two prominent methods for fabricating composites for bone scaffolds-the (solid) solvent method and the solvent-free (melting) method. While previous research has explored these methods individually, this study provides a direct comparison of their outcomes in terms of physicochemical properties, cytocompatibility, and mechanical strength. We also analyse their workflow and scalability potentials.
View Article and Find Full Text PDFMacromol Biosci
January 2025
Institute for Technical Chemistry, Macromolecular Chemistry, TU Braunschweig, Hagenring 30, 38106, Braunschweig, Germany.
Implant-integrated drug delivery systems that enable the release of biologically active factors can be part of an in situ tissue engineering approach to restore biological function. Implants can be functionalized with drug-loaded nanoparticles through a layer-by-layer assembly. Such coatings can release biologically active levels of growth factors.
View Article and Find Full Text PDFMater Today Bio
February 2025
Department of Orthopedics, the Fourth Medical Center of PLA General Hospital, Beijing, 100048, PR China.
A meniscus injury is a common cartilage disease of the knee joint. Despite the availability of various methods for the treatment of meniscal injuries, the poor regenerative capacity of the meniscus often necessitates resection, leading to the accelerated progression of osteoarthritis. Advances in tissue engineering have introduced meniscal tissue engineering as a potential treatment option.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!