Developmental plasticity is the ability of a genotype to express multiple phenotypes under different environmental conditions and has been shown to facilitate the evolution of novel traits. However, while the associated cost of plasticity, i.e., the loss in fitness due to the ability to express plasticity in response to environmental change, and the cost of phenotype, i.e., the loss of fitness due to expressing a fixed phenotype across environments, have been theoretically predicted, empirically such costs remain poorly documented and little understood. Here, we use a plasticity model system, hermaphroditic nematode , to experimentally measure these costs in wild isolates under controlled laboratory conditions. can develop either a bacterial feeding or predatory mouth morph in response to different external stimuli, with natural variation of mouth-morph ratios between strains. We first demonstrated the cost of phenotype by analyzing fecundity and developmental speed in relation to mouth morphs across the phylogenetic tree. Then, we exposed strains to two distinct microbial diets that induce strain-specific mouth-form ratios. Our results indicate that the plastic strain does shoulder a cost of plasticity, i.e., the diet-induced predatory mouth morph is associated with reduced fecundity and slower developmental speed. In contrast, the non-plastic strain suffers from the cost of phenotype since its phenotype does not change to match the unfavorable bacterial diet but shows increased fitness and higher developmental speed on the favorable diet. Furthermore, using a stage-structured population model based on empirically derived life history parameters, we show how population structure can alleviate the cost of plasticity in . The results of the model illustrate the extent to which the costs associated with plasticity and its effect on competition depend on ecological factors. This study provides support for costs of plasticity and phenotype based on empirical and modeling approaches.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10091500 | PMC |
http://dx.doi.org/10.1093/evlett/qrac001 | DOI Listing |
Anal Chem
January 2025
Separation Science Group, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4bis, B-9000 Ghent, Belgium.
Addressing the global challenge of ensuring access to safe drinking water, especially in developing countries, demands cost-effective, eco-friendly, and readily available technologies. The persistence, toxicity, and bioaccumulation potential of organic pollutants arising from various human activities pose substantial hurdles. While high-performance liquid chromatography coupled with high-resolution mass spectrometry (HPLC-HRMS) is a widely utilized technique for identifying pollutants in water, the multitude of structures for a single elemental composition complicates structural identification.
View Article and Find Full Text PDFBackground: Predicting decline over the course of Mild Cognitive Impairment (MCI) and Alzheimer's Disease (AD), especially on relatively short time frames, is vital for appropriate treatment planning and to tailor patient and support systems' expectations. The current study tested if a functional upper limb motor learning task could predict one-year change in cognition and daily function.
Method: Cognitively unimpaired (n = 61), MCI (n = 35), and AD (32) older subjects (age: 74.
Aesthet Surg J
January 2025
Department of Plastic and Reconstructive Surgery, Brussels University Hospital - Vrije Universiteit Brussel (VUB), Brussels, Belgium.
Background: Three-dimensional (3D) imaging enhances surgical planning and documentation in plastic surgery, but high costs limit accessibility. Mobile Light Detection and Ranging (LiDAR) technology offers a potential cost-effective alternative.
Objectives: To evaluate the accuracy and clinical utility of iPhone-based LiDAR scanning for breast measurements compared to traditional methods, and to establish standardized protocols for clinical implementation.
Adv Mater
January 2025
Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA.
Direct ink writing is a 3D printing method that is compatible with a wide range of structural, elastomeric, electronic, and living materials, and it continues to expand its uses into physics, engineering, and biology laboratories. However, the large footprint, closed hardware and software ecosystems, and expense of commercial systems often hamper widespread adoption. This work introduces a compact, low-cost, multimaterial, and high-throughput direct ink writing 3D printer platform with detailed assembly files and instructions provided freely online.
View Article and Find Full Text PDFEnviron Monit Assess
January 2025
Waste and Resource Management, Rostock University, Justus-Von-Liebig-Weg 6, 18059, Rostock, Germany.
We conducted surveys of Mediterranean beaches in Egypt, Morocco, and Tunisia including 37 macro-litter (> 25 mm) and 41 meso-litter (5-25 mm) assessments. Our study identified key litter items and assessed pollution sources on urban, semi-urban, tourist, and semi-rural beaches. Macro-litter concentration averaged 5032 ± 4919 pieces per 100 m or 1.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!