African Horse Sickness (AHS) is a vector-borne viral disease of equids. The disease can be highly lethal with mortality rates of up to 90% in non-immune equine populations. The clinical presentation in the equine host varies, but the pathogenesis underlying this variation remains incompletely understood. Various small animal models of AHS have been developed over the years to overcome the financial, bio-safety and logistical constraints of studying the pathology of this disease in the target species. One of the most successful small animal models is based on the use of interferon-alpha gene knock-out (IFNAR) mice. In order to increase our understanding of African Horse Sickness virus (AHSV) pathogenesis, we characterised the pathology lesions of AHSV infection in IFNAR mice using a strain of AHSV serotype 4 (AHSV-4). We found AHSV-4 infection was correlated with lesions in various organs; necrosis in the spleen and lymphoid tissues, inflammatory infiltration in the liver and brain, and pneumonia. Significant viral antigen staining was only detected in the spleen and brain, however. Together these results confirm the value of the IFNAR mouse model for the study of the immuno-biology of AHSV infections in this particular system, and its usefulness for evaluating protective efficacy of candidate vaccines in preclinical studies.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10098166 | PMC |
http://dx.doi.org/10.3389/fvets.2023.1114240 | DOI Listing |
Equine Vet J
January 2025
Richard A. Gillespie College of Veterinary Medicine, Lincoln Memorial University, Harrogate, Tennessee, USA.
Background: There is a shortage of equine veterinarians. Understanding what factors are associated with job satisfaction in equine veterinarians can inform interventions to increase retention in equine medicine.
Objective: To explore the prominent factors causing work dissatisfaction and burnout in equine veterinarians.
Toxicon X
December 2024
Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica.
Recent research suggests that a polygeneric immunogen made from the venoms of the most medically important viperid and elapid snakes in sub-Saharan Africa could elicit a broader antibody response in horses compared to the current EchiTAb-plus-ICP antivenom, especially against neurotoxic elapid venoms. To test this, 25 horses that have been regularly immunized to produce this antivenom were reimmunized with an immunogen containing 22 venoms from various snake species from the genera , , , and both spitting and non-spitting . The plasma collected from these horses was processed using the caprylic acid method to produce an industrial-scale freeze-dried antivenom.
View Article and Find Full Text PDFFive epidemiological aspects of ASF were evaluated using literature reviews, field studies, questionnaires and mathematical models. First, a literature review and a case-control study in commercial pig farms emphasised the importance of biosecurity and farming practices, including the spread of manure around farms and the use of bedding material as risk factors, while the use of insect nets was a protective factor. Second, although wild boar density is a relevant known factor, the statistical and mechanistic models did not show a clear and consistent effect of wild boar density on ASF epidemiology in the selected scenarios.
View Article and Find Full Text PDFViruses
November 2024
State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin 150069, China.
African horse sickness (AHS) is an acute, fatal, contagious disease of animals of the family Equidae and is caused by infection with the African horse sickness virus (AHSV). Based on the outer capsid protein VP2, AHSV is classified into nine serotypes (AHSV-1 to -9) with little or no serological cross-reactivity between them. In 2020, AHS outbreaks caused by AHSV-1 were reported in Thailand and Malaysia, marking the first occurrences of AHS in Southeast Asia.
View Article and Find Full Text PDFParasit Vectors
November 2024
Pathogen Discovery Laboratory, Institut Pasteur, Université Paris Cité, 75015, Paris, France.
Background: Ticks are significant vectors of pathogens, including viruses, bacteria, and protozoa. With approximately 900 tick species worldwide, many are expanding their geographical range due to changing socioeconomic and climate factors. The Danube Delta, one of Europe's largest wetlands, is an ecosystem that, despite its ecological importance, remains understudied concerning the risk of introducing new tick-borne viruses.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!