This study describes a sensor based on quartz crystal microbalance (QCM) coated by polyacrylonitrile (PAN) nanofibers containing nickel nanoparticles for methanol gas detection. The PAN/nickel nanofibers composites were made via electrospinning and electrospray methods. The QCM sensors coated with the PAN/nickel nanofiber composite were evaluated for their sensitivities, selectivities, and stabilities. The morphologies and elemental compositions of the sensors were examined using a scanning electron microscope-energy dispersive X-ray. A Fourier Transform Infrared spectrometer was used to investigate the elemental bonds within the nanofiber composites. The QCM sensors coated with PAN/nickel nanofibers offered a high specific surface area to enhance the QCM sensing performance. They exhibited excellent sensing characteristics, including a high sensitivity of 389.8 ± 3.8 Hz/SCCM, response and recovery times of 288 and 251 s, respectively, high selectivity for methanol compared to other gases, a limit of detection (LOD) of about 1.347 SCCM, and good long-term stability. The mechanism of methanol gas adsorption by the PAN/nickel nanofibers can be attributed to intermolecular interactions, such as the Lewis acid-base reaction by PAN nanofibers and hydrogen bonding by nickel nanoparticles. The results suggest that QCM-coated PAN/nickel nanofiber composites show great potential for the design of highly sensitive and selective methanol gas sensors.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10099416 | PMC |
http://dx.doi.org/10.1021/acsomega.3c00760 | DOI Listing |
Colorectal cancer (CRC) is a prevalent and deadly disease, necessitating the exploration of novel therapeutic strategies. Traditional chemotherapy often encounters drug resistance and adverse side effects, highlighting the need for alternative approaches. , a plant rich in phytochemical constituents, was investigated for its potential as an anticancer agent against colorectal cancer (CRC).
View Article and Find Full Text PDFL. is an aromatic spice, utilized as an original and peculiar flavoring ingredient in a variety of culinary applications and pharmaceuticals. Black seed ( L.
View Article and Find Full Text PDFHeliyon
January 2025
Department of Chemical Sciences, University of Johannesburg, PO Box 17011, Doornfontein, 2028, Johannesburg, South Africa.
Semiconductor metal oxide gas sensors are widely used to detect ethanol vapours, commonly used in industrial productions, road safety detection, and solvent production; however, they operate at extremely high temperatures. In this work, we present manganese dioxide nanorods (MnO NRs) prepared via hydrothermal synthetic route, carbon soot (CNPs) prepared via pyrolysis of lighthouse candle, and poly-4-vinylpyridine (P4VP) composite for the detection of ethanol vapour at room temperature. MnO, CNPs, P4VP, and MnO NRs-CNPs-P4VP composite were characterised using scanning electron microscopy, transmission electron microscopy, powder X-ray diffraction, Fourier transform infrared spectroscopy, and Raman spectroscopy.
View Article and Find Full Text PDFPak J Pharm Sci
January 2025
Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman, Jordan.
This study evaluated the antioxidant and antiproliferative effects of aqueous, ethanolic and methanolic extracts of Sedum nicaeense flowers and leaves. The MTT assay assessed cytotoxicity against colorectal cancer cells (Caco-2, HCT-116), breast cancer cells (T47D, MCF-7) and normal fibroblasts (MRC-5), while the ferric-reducing antioxidant power (FRAP) assay measured antioxidant capacity. Essential oils from flowers and leaves were analyzed using gas chromatography-mass spectrometry (GC-MS).
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Department of Engineering, School of Engineering and Technology, Sunway University, Bandar Sunway, Petaling Jaya, 47500, Malaysia.
A catalytic system has been developed, utilizing metal nanoparticles confined within a chitosan‑carbon black composite hydrogel (M-CH/CB), aimed at improving ease of use and recovery in catalytic processes. The M-CH/CBs were characterized by XPS, XRD, SEM, and EDX, the M-CH/CB system demonstrated exceptional catalytic activity in producing hydrogen gas (H) from water and methanol, and in reducing several hazardous materials including 2-nitrophenol (2-NP), 4-nitrophenol (4-NP), 2,6-dinitrophenol (2,6-DNP), acridine orange (ArO), methyl orange (MO), congo red (CR), methylene blue (MB), and potassium ferricyanide (PFC). Among the tested nanocatalysts, CH/CB showed the highest efficiency for H₂ production, while Fe-CH/CB excelled in contaminant reduction (7.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!