Perovskite solar cells (PSCs) with superior performance have been recognized as a potential candidate in photovoltaic technologies. However, defects in the active perovskite layer induce nonradiative recombination which restricts the performance and stability of PSCs. The construction of a thiophene-based 2D structure is one of the significant approaches for surface passivation of hybrid PSCs that may combine the benefits of the stability of 2D perovskite with the high performance of three-dimensional (3D) perovskite. Here, a sulfur-rich spacer cation 2-thiopheneethylamine iodide (TEAI) is synthesized as a passivation agent for the construction of a three-dimensional/two-dimensional (3D/2D) perovskite bilayer structure. TEAI-treated PSCs possess a much higher efficiency (20.06%) compared to the 3D perovskite (MAFAPbI) devices (17.42%). Time-resolved photoluminescence and femtosecond transient absorption spectroscopy are employed to investigate the effect of surface passivation on the charge carrier dynamics of the 3D perovskite. Additionally, the stability test of TEAI-treated perovskite devices reveals significant improvement in humid (RH ∼ 46%) and thermal stability as the sulfur-based 2D (TEA)PbI material self-assembles on the 3D surface, making the perovskite surface hydrophobic. Our findings provide a reliable approach to improve device stability and performance successively, paving the way for industrialization of PSCs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10099414 | PMC |
http://dx.doi.org/10.1021/acsomega.2c08126 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!