Natural killer (NK) cells play a potent role in antitumor immunity via spontaneously eliminating tumor directly. However, some tumors such as prostate cancer constantly escape this immune response by down-regulating cell surface molecule recognition and/or secreting immune impressive cytokines. Here, we found pterostilbene, a natural agent with potent anticancer activity, could enhance expression of major histocompatibility complex class I chain-related proteins A and B (MICA/B) on prostate cancer cells surface, which are ligands of the natural killer group 2 member D (NKG2D) expressed by NK cells, and inhibit TGF-β1 secretion by prostate cancer cells. Further, we discovered that these effects were caused by inhibition of miR-20a in prostate cancer cells by pterostilbene. MiR-20a could target the 3' untranslated region (UTR) of MICA/B, resulting in their expression down-regulation. Inhibition of TGF-β1 function by its specific antibody attenuated its impairment to NKG2D on NK cells. Finally, we observed that pterostilbene-treated prostate cancer cells were more easily to be killed by NK cells. Taken together, our findings demonstrated inhibition of miR-20a by pterostilbene in prostate cancer cells could increase MICA/B expression and decrease TGF-β1 secretion, which enhanced NK cell-mediated cytotoxicity againt prostate cancer cells, suggesting a potential approach for increasing anti-prostate cancer immune.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10102449PMC
http://dx.doi.org/10.1016/j.heliyon.2023.e14957DOI Listing

Publication Analysis

Top Keywords

prostate cancer
32
cancer cells
28
inhibition mir-20a
12
cells
12
cancer
9
mir-20a pterostilbene
8
prostate
8
killed cells
8
natural killer
8
tgf-β1 secretion
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!