A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Development and external validation of prediction models for critical outcomes of unvaccinated COVID-19 patients based on demographics, medical conditions and dental status. | LitMetric

Background: Multiple prediction models were developed for critical outcomes of COVID-19. However, prediction models using predictors which can be easily obtained in clinical practice and on dental status are scarce.

Aim: The study aimed to develop and externally validate prediction models for critical outcomes of COVID-19 for unvaccinated adult patients in hospital settings based on demographics, medical conditions, and dental status.

Methods: A total of 285 and 352 patients from two hospitals in the Netherlands were retrospectively included as derivation and validation cohorts. Demographics, medical conditions, and dental status were considered potential predictors. The critical outcomes (death and ICU admission) were considered endpoints. Logistic regression analyses were used to develop two models: for death alone and for critical outcomes. The performance and clinical values of the models were determined in both cohorts.

Results: Age, number of teeth, chronic kidney disease, hypertension, diabetes, and chronic obstructive pulmonary diseases were the significant independent predictors. The models showed good to excellent calibration with observed: expected (O:E) ratios of 0.98 (95%CI: 0.76 to 1.25) and 1.00 (95%CI: 0.80 to 1.24), and discrimination with shrunken area under the curve (AUC) values of 0.85 and 0.79, based on the derivation cohort. In the validation cohort, the models showed good to excellent discrimination with AUC values of 0.85 (95%CI: 0.80 to 0.90) and 0.78 (95%CI: 0.73 to 0.83), but an overestimation in calibration with O:E ratios of 0.65 (95%CI: 0.49 to 0.85) and 0.67 (95%CI: 0.52 to 0.84).

Conclusion: The performance of the models was acceptable in both derivation and validation cohorts. Number of teeth was an additive important predictor of critical outcomes of COVID-19. It is an easy-to-apply tool in hospitals for risk stratification of COVID-19 prognosis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10084632PMC
http://dx.doi.org/10.1016/j.heliyon.2023.e15283DOI Listing

Publication Analysis

Top Keywords

critical outcomes
24
prediction models
16
demographics medical
12
medical conditions
12
conditions dental
12
dental status
12
outcomes covid-19
12
models
9
models critical
8
based demographics
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!