Integration of multi-omics data reveals a novel hybrid breast cancer subtype and its biomarkers.

Front Oncol

Key Laboratory of Tropical Translational Medicine of Ministry of Education, College of Biomedical Information and Engineering, Hainan Medical University, Haikou, China.

Published: March 2023

Tumor heterogeneity in breast cancer hinders proper diagnosis and treatment, and the identification of molecular subtypes may help enhance the understanding of its heterogeneity. Therefore, we proposed a novel integrated multi-omics approach for breast cancer typing, which led to the identification of a hybrid subtype (Mix_Sub subtype) with a poor survival prognosis. This subtype is characterized by lower levels of the inflammatory response, lower tumor malignancy, lower immune cell infiltration, and higher T-cell dysfunction. Moreover, we found that cell-cell communication mediated by NCAM1-FGFR1 ligand-receptor interaction and cellular functional states, such as cell cycle, DNA damage, and DNA repair, were significantly altered and upregulated in patients with this subtype, and that such patients displayed greater sensitivity to targeted therapies. Subsequently, using differential genes among subtypes as biomarkers, we constructed prognostic risk models and subtype classifiers for the Mix_Sub subtype and validated their generalization ability in external datasets obtained from the GEO database, indicating their potential therapeutic and prognostic significance. These biomarkers also showed significant spatially variable expression in malignant tumor cells. Collectively, the identification of the Mix_Sub breast cancer subtype and its biomarkers, based on the driving relationship between omics, has deepened our understanding of breast cancer heterogeneity and facilitated the development of breast cancer precision therapy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10091394PMC
http://dx.doi.org/10.3389/fonc.2023.1130092DOI Listing

Publication Analysis

Top Keywords

breast cancer
24
subtype
8
cancer subtype
8
subtype biomarkers
8
mix_sub subtype
8
breast
6
cancer
6
integration multi-omics
4
multi-omics data
4
data reveals
4

Similar Publications

Objective: Mailed letters to women identified as being at high-risk for developing breast cancer were not having the desired effect for encouraging appointments with prevention-focused providers at a large Midwest healthcare system. A partnership with communication scholars sought to revise the letter to increase awareness, intentions, and appointments.

Methods: Guided by the Extended Parallel Process Model, survey responses were collected from letter recipients over the course of two years, both pre and post letter revision.

View Article and Find Full Text PDF

Although peptide vaccines offer a novel venue for cancer immunotherapy, clinical success has been rather limited. Cell-penetrating peptides, due to their ability to translocate through the cell membrane, could be conjugated to the peptide vaccine to2 enhance therapeutic efficiency. The S4 transduction domain of the shaker-potassium channel was conjugated to mammaglobin-A (MamA) immunodominant epitope (MamA2.

View Article and Find Full Text PDF

Background: Triple-negative breast cancer (TNBC) is the most aggressive subtype of breast cancer, with the worst prognosis among all subtypes. The impact of distinct cell subpopulations within the tumor microenvironment (TME) on TNBC patient prognosis has yet to be clarified.

Methods: Utilizing single-cell RNA sequencing (scRNA-seq) integrated with bulk RNA sequencing (bulk RNA-seq), we applied Cox regression models to compute hazard ratios, and cross-validated prognostic scoring using a GLMNET-based Cox model.

View Article and Find Full Text PDF

An approach to COVID‑19 and oncology: From impact, staging and management to vaccine outcomes in cancer patients: A systematic review and meta‑analysis.

Exp Ther Med

February 2025

Oncology Department, Princess Noorah Oncology Center, King Abdul Aziz Medical City, Ministry of National Guard-Health Affairs, King Abdullah International Medical Research Centre, College of Medicine, King Saud bin Abdulaziz University for Health Sciences, Makkah-Jeddah Highway Road, Jeddah 22384, Saudi Arabia.

The COVID-19 pandemic has had a global impact, with >771 million confirmed cases and 6 million deaths reported by October 2023. Cancer patients, due to their immunosuppressed status, face an increased infection risk and higher COVID-19 complications. The present study aimed to assess clinical outcomes in COVID-19-infected cancer patients, focusing on mortality rates and other aspects, providing valuable insight for better protection and outcomes.

View Article and Find Full Text PDF

Activatable multifunctional nanoparticles present considerable advantages in cancer treatment by integrating both diagnostic and therapeutic functionalities into a single platform. These nanoparticles can be precisely engineered to selectively target cancer cells, thereby reducing the risk of damage to healthy tissues. Once localized at the target site, they can be activated by external stimuli such as light, pH changes, or specific enzymes, enabling precise control over the release of therapeutic agents or the initiation of therapeutic effects.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!