Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
We examine the relationship between contemporaneous fine particulate matter exposure and COVID-19 morbidity and mortality using an instrumental variable approach. Harnessing daily changes in county-level wind direction, we show that arguably exogenous fluctuations in local air quality impact the incidence of confirmed COVID-19 cases and deaths. We find that a one g/m increase in PM 2.5, or 15% of the average PM 2.5 concentration in a county, increases the number of same-day confirmed cases by 1.8% from the mean case incidence in a county. A one g/m increase in PM 2.5 increases the same-day death rate by just over 4% from the mean. These effects tend to increase in magnitude over longer time horizons and are robust to a host of sensitivity tests. When analyzing potential mechanisms, we also demonstrate that an additional unit of PM 2.5 increases COVID-19-related hospitalizations by 0.8% and use of intensive care units by 0.5% on the same day. Using individual case records, we also show that higher PM 2.5 exposure at the time of case confirmation increases risk of later mechanical ventilation and mortality. These results suggest that air pollution plays an important role in mediating the severity of respiratory syndromes such as COVID-19.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10073864 | PMC |
http://dx.doi.org/10.1016/j.jeem.2023.102815 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!