ILC3s have been identified as crucial immune regulators that play a role in maintaining host homeostasis and modulating the antitumor response. Emerging evidence supports the idea that LTi cells play an important role in initiating lymphoid tissue development, while other ILC3s can promote host defense and orchestrate adaptive immunity, mainly through the secretion of specific cytokines and crosstalk with other immune cells or tissues. Additionally, dysregulation of ILC3-mediated overexpression of cytokines, changes in subset abundance, and conversion toward other ILC subsets are closely linked with the occurrence of tumors and inflammatory diseases. Regulation of ILC3 cytokines, ILC conversion and LTi-induced TLSs may be a novel strategy for treating tumors and intestinal or extraintestinal inflammatory diseases. Herein, we discuss the development of ILCs, the biology of ILC3s, ILC plasticity, the correlation of ILC3s and adaptive immunity, crosstalk with the intestinal microenvironment, controversial roles of ILC3s in intestinal diseases and potential applications for treatment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10090672PMC
http://dx.doi.org/10.3389/fimmu.2023.1134636DOI Listing

Publication Analysis

Top Keywords

ilc3s intestinal
8
intestinal diseases
8
play role
8
adaptive immunity
8
inflammatory diseases
8
ilc3s
6
controversial role
4
role ilc3s
4
intestinal
4
diseases
4

Similar Publications

Here, we explore the relationship between dietary fibers, colonic epithelium major histocompatibility complex class II (MHC-II) expression, and immune cell interactions in regulating susceptibility to Clostridioides difficile infection (CDI). We find that a low-fiber diet increases MHC-II expression in the colonic epithelium, which, in turn, worsens CDI by promoting the development of pathogenic CD4 intraepithelial lymphocytes (IELs). The influence of dietary fibers on MHC-II expression is mediated by its metabolic product, acetate, and its receptor, free fatty acid receptor 2 (FFAR2).

View Article and Find Full Text PDF

5-Fluorouracil (5-FU) is a primary chemotherapeutic agent for gastrointestinal cancers, known to improve survival but also cause significant intestinal damage, affecting patient quality of life. This study investigated the IL-23-IL-22 axis's role in moderating 5-FU-induced intestinal damage. We analyzed paracancerous tissue damage in colon cancer patients with different Tumor Regression Grade (TRG) and found a direct correlation between TRG and tissue damage severity, indicating that higher chemotherapy effectiveness is linked to increased tissue damage.

View Article and Find Full Text PDF

The intestinal fungus Aspergillus tubingensis promotes polycystic ovary syndrome through a secondary metabolite.

Cell Host Microbe

January 2025

State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China; Institute of Advanced Clinical Medicine, Peking University, National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, China; Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China. Electronic address:

Polycystic ovary syndrome (PCOS) affects 6%-10% of women of reproductive age and is known to be associated with disruptions in the gut bacteria. However, the role of the gut mycobiota in PCOS pathology remains unclear. Using culture-dependent and internal transcribed spacer 2 (ITS2)-sequencing methods, we discovered an enrichment of the gut-colonizable fungus Aspergillus tubingensis in 226 individuals, with or without PCOS, from 3 different geographical areas within China.

View Article and Find Full Text PDF

NRP1 instructs IL-17-producing ILC3s to drive colitis progression.

Cell Mol Immunol

January 2025

Department of oncology, The Second Hospital of Tianjin Medical University; Tianjin Key Laboratory of Precision Medicine for Sex Hormones and Diseases; Tianjin Institute of Immunology, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China.

Group 3 innate lymphoid cells (ILC3s) control tissue homeostasis and orchestrate mucosal inflammation; however, the precise mechanisms governing ILC3 activity are fully understood. Here, we identified the transmembrane protein neuropilin-1 (NRP1) as a positive regulator of interleukin (IL)-17-producing ILC3s in the intestine. NRP1 was markedly upregulated in intestinal mucosal biopsies from patients with inflammatory bowel disease (IBD) compared with healthy controls.

View Article and Find Full Text PDF

Diarrhoea and preweaning mortality in piglets are crucial factors impacting the economic sustainability of the swine industry. Pathogenic infections are among the main causes of diarrhea and mortality. Group 3 innate lymphoid cells (ILC3s) are crucial for safeguarding against pathogenic infections.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!