Objectives: The Notch signaling pathway has been implicated in the pathogenesis of active tuberculosis (TB), and Th1-type cell-mediated immunity is essential for effective control of mycobacterial infection. However, it remains unclear whether Notch signaling molecules (Notch1, DLL1, and Hes1) and Th1-type factors (T-bet and IFN-γ) can serve as biomarkers for tracking the progression of active TB at different stages along with peripheral blood white blood cell (WBC) parameters.

Methods: A total of 60 participants were enrolled in the study, including 37 confirmed TB patients (mild (n=17), moderate/severe (n=20)) and 23 healthy controls. The mRNA expression of Notch1, DLL1, Hes1, T-bet and IFN-γ in the peripheral blood mononuclear cells (PBMCs) of the subjects was measured by RT-qPCR, then analyzed for differences. Receiver Operating Characteristic curve (ROC) was used to assess the effectiveness of each factor as a biomarker in identifying lung injury.

Results: We found that mRNA expression levels of Notch1, DLL1, and Hes1 were upregulated in active TB patients, with higher levels observed in those with moderate/severe TB than those with mild TB or without TB. In contrast, mRNA levels of T-bet and IFN-γ were downregulated and significantly lower in mild and moderate/severe cases. Furthermore, the combiROC analysis of IFN-γ and the percentage of lymphocytes (L%) among WBC parameters showed superior discriminatory ability compared to other factors for identifying individuals with active TB versus healthy individuals. Notably, Notch pathway molecules were more effective than Th1-type factors and WBC parameters in differentiating mild and moderate/severe cases of active TB, particularly in the combiROC model that included Notch1 and Hes1.

Conclusions: Our study demonstrated that Notch1, Hes1, IFN-γ, and L% can be used as biomarkers to identify different stages of active TB patients and to monitor the effectiveness of treatment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10090694PMC
http://dx.doi.org/10.3389/fimmu.2023.1134123DOI Listing

Publication Analysis

Top Keywords

notch1 dll1
16
dll1 hes1
12
t-bet ifn-γ
12
notch signaling
8
th1-type factors
8
peripheral blood
8
mrna expression
8
active patients
8
mild moderate/severe
8
moderate/severe cases
8

Similar Publications

Danlian-Tongmai formula improves diabetic vascular calcification by regulating CCN3/NOTCH signal axis to inhibit inflammatory reaction.

Front Pharmacol

January 2025

National Clinical Research Center for TCM Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China.

Background: Vascular calcification (VC) commonly occurs in diabetes and is associated with cardiovascular disease incidence and mortality. Currently, there is no drug treatment for VC. The Danlian-Tongmai formula (DLTM) is a traditional Chinese medicine (TCM) prescription used for diabetic VC (DVC), but its mechanisms of action remain unclear.

View Article and Find Full Text PDF

Diversity in Notch ligand-receptor signaling interactions.

Elife

January 2025

Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States.

The Notch signaling pathway uses families of ligands and receptors to transmit signals to nearby cells. These components are expressed in diverse combinations in different cell types, interact in a many-to-many fashion, both within the same cell (in cis) and between cells (in trans), and their interactions are modulated by Fringe glycosyltransferases. A fundamental question is how the strength of Notch signaling depends on which pathway components are expressed, at what levels, and in which cells.

View Article and Find Full Text PDF

Role of the Notch signaling pathway in porcine oocyte maturation.

Cell Commun Signal

January 2025

Laboratory of Theriogenology, College of Veterinary Medicine, Chungnam National University, Daejeon, 34134, Republic of Korea.

Background: Although the Notch signaling pathway is known to play an important role in ovarian follicle development in mammals, whether it is involved in oocyte maturation remains unclear. Therefore, this study was performed to elucidate the existence and role of the Notch signaling pathway during oocyte maturation in a porcine model.

Methods: Reverse transcription-polymerase chain reaction (RT-PCR) and immunocytochemical assays were used to determine the existence of Notch signaling pathway-related transcripts and proteins in porcine cumulus-oocyte complexes (COCs).

View Article and Find Full Text PDF

Background: Lgr5-positive cells located in the basal layer of crypts have self-regenerative and proliferative differentiation potentials of intestinal stem cells (ISCs), maintaining a balance of regeneration-repair in mucosal epithelium. However, the mechanisms of mucosal repair that are regulated by ISCs in ulcerative colitis (UC) remain unclear.

Method: Colon tissues from patients with UC were collected to test β-catenin and Notch1 expression by using Western blot and quantitative real-time polymerase chain reaction (PCR).

View Article and Find Full Text PDF

Brain ischemia causes systemic Notch1 activity in endothelial cells to drive atherosclerosis.

Immunity

September 2024

Department of Neurology, Tianjin Neurological Institute, Tianjin Institute of Immunology, State Key Laboratory of Experimental Hematology, International Joint Laboratory of Ocular Diseases, Ministry of Education, Haihe Laboratory of Cell Ecosystem, Laboratory of Post-Neuroinjury Neurorepair and Regeneration in Central Nervous System Tianjin & Ministry of Education, Tianjin Medical University General Hospital, Tianjin 300052, China. Electronic address:

Stroke leads to persistently high risk for recurrent vascular events caused by systemic atheroprogression that is driven by endothelial cell (EC) activation. However, whether and how stroke induces sustained pro-inflammatory and proatherogenic endothelial alterations in systemic vessels remain poorly understood. We showed that brain ischemia induces persistent activation, the upregulation of adhesion molecule VCAM1, and increased senescence in peripheral ECs until 4 weeks after stroke onset.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!