Nano-catalysts are of special character for the synthesis of organic molecules with high efficiency, and exceptional physicochemical properties. The objective of this study was to present an overview of the literature reports concerning the synthetic strategies supported by nano-catalysts and the biological features of heterocycle-integrated pyridopyrimidine scaffolds. The basic topics include the strategies that were adopted to prepare pyrido[2,3-]pyrimidines and pyrido[1,2-]pyrimidines. The synthesis of pyrido[2,3-]pyrimidines was attained through two-, three-, or four-component reactions. The synthesis of spirocyclic systems, including spiro[indoline-pyridopyrimidine] derivatives and arylation reactions, was investigated. The anticipated mechanisms of the diverse target products, in addition to the preparation of the nanocatalysts, were scrutinized. The privileged antimicrobial characteristics, challenges, literature overview, and future prospectives were consistently investigated.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10103583 | PMC |
http://dx.doi.org/10.1039/d3ra00922j | DOI Listing |
STAR Protoc
January 2025
National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan 430070, China. Electronic address:
The plastid-encoded RNA polymerase (PEP) plays an essential role in the transcription of the chloroplast genome. Here, we present a strategy to purify the transcriptionally active protein complex from transplastomic tobacco (Nicotiana tabacum) lines in which one of the PEP core subunits is fused to an epitope tag. We describe experimental procedures for designing transformation constructs for PEP purification, selection, and analysis of transplastomic tobacco plants.
View Article and Find Full Text PDFCell Mol Biol (Noisy-le-grand)
January 2025
Department of Biotechnology, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran.
One of the prevailing trends in contemporary agriculture is the application of biological control. Nevertheless, several reports suggest that biocontrol bacteria exhibit poor survival rates in host plants. Consequently, the concept of shielding biological control agents by encapsulating them in outer coatings has gained popularity.
View Article and Find Full Text PDFXi Bao Yu Fen Zi Mian Yi Xue Za Zhi
January 2025
Department of Microbiology and Pathogenic Biology, Air Force Military Medical University, Xi'an 710032, China. *Corresponding authors, E-mail:
Objective The prevalence of drug-resistant Mycobacterium tuberculosis (Mtb) strains is exacerbating the global burden of tuberculosis (TB), highlighting the urgent need for new treatment strategies for TB. Methods The recombinant adenovirus vaccine expressing cyclic di-adenosine monophosphate (c-di-AMP) phosphodiesterase B (CnpB) (rAd-CnpB), was administered to normal mice via mucosal immunization, either alone or in combination with drug therapy, to treat Mtb respiratory infections in mice.Enzyme-linked immunosorbent assay (ELISA) was used to detect the levels of antibodies in serum and bronchoalveolar lavage fluid (BALF).
View Article and Find Full Text PDFNat Commun
January 2025
Institute for Environmental Decisions, ETH Zürich, 8092, Zürich, Switzerland.
Growing demand for air travel and limited scalable solutions pose significant challenges to the mitigation of aviation's climate change impact. Direct air capture (DAC) may gain prominence due to its versatile applications for either carbon removal (direct air carbon capture and storage, DACCS) or synthetic fuel production (direct air carbon capture and utilization, DACCU). Through a comprehensive and time-dynamic techno-economic assessment, we explore the conditions for synthetic fuels from DACCU to become cost-competitive with an emit-and-remove strategy based on DACCS under 2050 CO and climate neutrality targets.
View Article and Find Full Text PDFMethods
January 2025
Department of Physiology, Ajou University School of Medicine, Suwon 16499 Republic of Korea; Department of Molecular Science and Technology, Ajou University, Suwon 16499 Republic of Korea. Electronic address:
Pancreatic α-amylase breaks down starch into isomaltose and maltose, which are further hydrolyzed by α-glucosidase in the intestine into monosaccharides, rapidly raising blood sugar levels and contributing to type 2 diabetes mellitus (T2DM). Synthetic inhibitors of carbohydrate-digesting enzymes are used to manage T2DM but may harm organ function over time. Bioactive peptides offer a safer alternative, avoiding such adverse effects.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!