Artificial intelligence (AI) has been widely introduced to various medical imaging applications ranging from disease visualization to medical decision support. However, data privacy has become an essential concern in clinical practice of deploying the deep learning algorithms through cloud computing. The sensitivity of patient health information (PHI) commonly limits network transfer, installation of bespoke desktop software, and access to computing resources. Serverless edge-computing shed light on privacy preserved model distribution maintaining both high flexibility (as cloud computing) and security (as local deployment). In this paper, we propose a browser-based, cross-platform, and privacy preserved medical imaging AI deployment system working on consumer-level hardware via serverless edge-computing. Briefly we implement this system by deploying a 3D medical image segmentation model for computed tomography (CT) based lung cancer screening. We further curate tradeoffs in model complexity and data size by characterizing the speed, memory usage, and limitations across various operating systems and browsers. Our implementation achieves a deployment with (1) a 3D convolutional neural network (CNN) on CT volumes (256×256×256 resolution), (2) an average runtime of 80 seconds across Firefox v.102.0.1/Chrome v.103.0.5060.114/Microsoft Edge v.103.0.1264.44 and 210 seconds on Safari v.14.1.1, and (3) an average memory usage of 1.5 GB on Microsoft Windows laptops, Linux workstation, and Apple Mac laptops. In conclusion, this work presents a privacy-preserved solution for medical imaging AI applications that minimizes the risk of PHI exposure. We characterize the tools, architectures, and parameters of our framework to facilitate the translation of modern deep learning methods into routine clinical care.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10099365 | PMC |
http://dx.doi.org/10.1117/12.2653626 | DOI Listing |
Mol Neurodegener
January 2025
Department of Radiology and Imaging Sciences, Center for Neuroimaging, Indiana University School of Medicine, Indianapolis, IN, USA.
Alzheimer's disease (AD) is a debilitating neurodegenerative disease that is marked by profound neurovascular dysfunction and significant cell-specific alterations in the brain vasculature. Recent advances in high throughput single-cell transcriptomics technology have enabled the study of the human brain vasculature at an unprecedented depth. Additionally, the understudied niche of cerebrovascular cells, such as endothelial and mural cells, and their subtypes have been scrutinized for understanding cellular and transcriptional heterogeneity in AD.
View Article and Find Full Text PDFEur J Med Res
January 2025
Department of Thoracic Medicine, Chang Gung Memorial Hospital, Linkou Branch, No. 5, Fu-Shing St., GuiShan, Taoyuan, Taiwan.
Background: This study compared the ventilatory variables and computed tomography (CT) features of patients with coronavirus disease 2019 (COVID-19) versus those of patients with pulmonary non-COVID-19-related acute respiratory distress syndrome (ARDS) during the early phase of ARDS.
Methods: This prospective, observational cohort study of ARDS patients in Taiwan was performed between February 2017 and June 2018 as well as between October 2020 and January 2024. Analysis was performed on clinical characteristics, including consecutive ventilatory variables during the first week after ARDS diagnosis.
Ital J Pediatr
January 2025
Department of Neonatology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao tong University, Shanghai, China.
Background: The variety of shocks in neonates, if not recognized and treated immediately, is a major cause for fatality. The use of echocardiography may improve assessment and treatment, but its reference values across gestational age (GA) and birth weight (BW) are lacking. To address the information gap, this study aimed at correlating GA and BW of newborns with nonhemodynamic abnormalities, and at evaluating the usefulness of such reference values in neonates with early onset septic (EOS) -shock.
View Article and Find Full Text PDFWorld J Surg Oncol
January 2025
Department of Hepatobiliary and Pancreas, Affiliated Hospital of Qingdao University, NO.1677 Wutaishan Road, Qingdao, Shandong Province, 266555, China.
Background: With the rising diagnostic rate of gallbladder polypoid lesions (GPLs), differentiating benign cholesterol polyps from gallbladder adenomas with a higher preoperative malignancy risk is crucial. This study aimed to establish a preoperative prediction model capable of accurately distinguishing between gallbladder adenomas and cholesterol polyps using machine learning algorithms.
Materials And Methods: We retrospectively analysed the patients' clinical baseline data, serological indicators, and ultrasound imaging data.
BMC Med
January 2025
Department of Nuclear Medicine, West China Hospital, Sichuan University, Guoxue Alley, Address: No.37, Chengdu City, Sichuan, 610041, China.
Background: This study aimed to construct a radiomics-based imaging biomarker for the non-invasive identification of transformed follicular lymphoma (t-FL) using PET/CT images.
Methods: A total of 784 follicular lymphoma (FL), diffuse large B-cell lymphoma, and t-FL patients from 5 independent medical centers were included. The unsupervised EMFusion method was applied to fuse PET and CT images.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!