Ultraprocessed food is established as a metabolic disruptor acting to increase adiposity, reduce mitochondrial efficiency, drive insulin resistance, alter growth, and contribute to human morbidity and mortality. Consumer packaged goods (CPG) companies are beginning to understand the detrimental impact of the food they market, and have employed substitution strategies to reduce salt, sugar, and fat. However, the harms of ultraprocessed foods are far more complex than any single component, and are not ameliorated by such simple substitutions. Over the past 2 years, the authors have worked with the Kuwaiti Danish Dairy Company (KDD) to conduct a comprehensive scientific evaluation of their entire commercial food and beverage portfolio. Assay of the macronutrients, micronutrients, additives, and toxins contained in each of their products was undertaken to determine the precise nature of each product's ingredients as well as the health impacts of processing. The authors formed a Scientific Advisory Team (SAT) and developed a tiered "Metabolic Matrix" founded in three science-based principles: (1) , (2) , and (3) . The Metabolic Matrix categorizes each product and provides the criteria, metrics, and recommendations for improvement or reformulation. Real-time consultation with the KDD Executive and Operations teams was vital to see these procedures through to fruition. This scientific exercise has enabled KDD to lay the groundwork for improving the health, well-being, and sustainability of their entire product line, while maintaining flavor, economic, and fiscal viability. This process is easily transferrable, and we are sharing this effort and its approaches as a . The key aim of our work is to not only make ultraprocessed food but to urge other food companies to implement similar analysis and reformulation of their product lines to improve the metabolic health and well-being of consumers worldwide.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10097968 | PMC |
http://dx.doi.org/10.3389/fnut.2023.1098453 | DOI Listing |
Inflamm Res
January 2025
Department of Burns and Cutaneous Surgery, Xijing Hospital, Air Force Medical University, No.127 Changle West Road, Xincheng District, Xi'an, 710032, Shaanxi, China.
Background: Hypertrophic scar (HS) is a severe skin fibrosis. Transplanting stem cells carrying anti-fibrotic cytokine genes, like interferon-gamma (IFN-γ), is a novel therapeutic strategy. Human amniotic epithelial cells (hAECs) are ideal seed cells and gene vectors.
View Article and Find Full Text PDFCell Mol Life Sci
January 2025
Department of Infection Biology, Wonkwang University School of Medicine, Iksan, 54538, Republic of Korea.
Collagen, a major component of the extracellular matrix, is crucial for the structural integrity of the Caenorhabditis elegans cuticle. While several proteins involved in collagen biosynthesis have been identified, the complete regulatory network remains unclear. This study investigates the role of CALU-1, an ER-resident calcium-binding protein, in cuticle collagen formation and maintenance.
View Article and Find Full Text PDFStem Cells
January 2025
Bioengineering Graduate Program, University of Notre Dame, Notre Dame, 46556 IN, USA.
Myocardial infarction can lead to the loss of billions of cardiomyocytes, and while cell-based therapies are an option, immature nature of in vitro-generated human induced pluripotent stem cell (iPSC)-derived cardiomyocytes (iCMs) is a roadblock to their development. Existing iPSC differentiation protocols don't go beyond producing fetal iCMs. Recently, adult extracellular matrix (ECM) was shown to retain tissue memory and have some success driving tissue-specific differentiation in unspecified cells in various organ systems.
View Article and Find Full Text PDFFront Biosci (Landmark Ed)
January 2025
Cardiometabolic and Endocrine Institute, North Brunswick, NJ 08902, USA.
Human skin is a physical and biochemical barrier that protects the internal body from the external environment. Throughout a person's life, the skin undergoes both intrinsic and extrinsic aging, leading to microscopic and macroscopic changes in its morphology. In addition, the repair processes slow with aging, making the older population more susceptible to skin diseases.
View Article and Find Full Text PDFFront Biosci (Landmark Ed)
January 2025
Department of Chemistry Education, Kongju National University, 32588 Gongju, Chungcheongnam-do, Republic of Korea.
In recent years, the role of coenzymes, particularly those from the vitamin B group in modulating the activity of metalloenzymes has garnered significant attention in cancer treatment strategies. Metalloenzymes play pivotal roles in various cellular processes, including DNA repair, cell signaling, and metabolism, making them promising targets for cancer therapy. This review explores the complex interplay between coenzymes, specifically vitamin Bs, and metalloenzymes in cancer pathogenesis and treatment.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!