Secretory expression of recombinant small laccase genes in Gram-positive bacteria.

Microb Cell Fact

Department of Food Sciences and Technology, University of Natural Resources and Life Sciences, Institute of Food Technology, Muthgasse 18, Vienna, Vienna, 1190, Austria.

Published: April 2023

Background: Laccases are multicopper enzymes that oxidize a wide range of aromatic and non-aromatic compounds in the presence of oxygen. The majority of industrially relevant laccases are derived from fungi and are produced in eukaryotic expression systems such as Pichia pastoris and Saccharomyces cerevisiae. Bacterial laccases for research purposes are mostly produced intracellularly in Escherichia coli, but secretory expression systems are needed for future applications. Bacterial laccases from Streptomyces spp. are of interest for potential industrial applications because of their lignin degrading activities.

Results: In this study, we expressed small laccases genes from Streptomyces coelicolor, Streptomyces viridosporus and Amycolatopsis 75iv2 with their native signal sequences in Gram-positive Bacillus subtilis and Streptomyces lividans host organisms. The extracellular activities of ScLac, SvLac and AmLac expressed in S. lividans reached 1950 ± 99 U/l, 812 ± 57 U/l and 12 ± 1 U/l in the presence of copper supplementation. The secretion of the small laccases was irrespective of the copper supplementation; however, activities upon reconstitution with copper after expression were significantly lower, indicating the importance of copper during laccase production. The production of small laccases in B. subtilis resulted in extracellular activity that was significantly lower than in S. lividans. Unexpectedly, AmLac and ScLac were secreted without their native signal sequences in B. subtilis, indicating that B. subtilis secretes some heterologous proteins via an unknown pathway.

Conclusions: Small laccases from S. coelicolor, S. viridosporus and Amycolatopsis 75iv2 were secreted in both Gram-positive expression hosts B. subtilis and S. lividans, but the extracellular activities were significantly higher in the latter.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10108450PMC
http://dx.doi.org/10.1186/s12934-023-02075-5DOI Listing

Publication Analysis

Top Keywords

small laccases
16
secretory expression
8
laccases
8
expression systems
8
bacterial laccases
8
viridosporus amycolatopsis
8
amycolatopsis 75iv2
8
native signal
8
signal sequences
8
extracellular activities
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!